Journal articles: 'Moscow (R.S.F.S.R.)' – Grafiati (2024)

  • Bibliography
  • Subscribe
  • News
  • Referencing guides Blog Automated transliteration Relevant bibliographies by topics

Log in

Українська Français Italiano Español Polski Português Deutsch

We are proudly a Ukrainian website. Our country was attacked by Russian Armed Forces on Feb. 24, 2022.
You can support the Ukrainian Army by following the link: https://u24.gov.ua/. Even the smallest donation is hugely appreciated!

Relevant bibliographies by topics / Moscow (R.S.F.S.R.) / Journal articles

To see the other types of publications on this topic, follow the link: Moscow (R.S.F.S.R.).

Author: Grafiati

Published: 4 June 2021

Last updated: 7 February 2022

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Consult the top 50 journal articles for your research on the topic 'Moscow (R.S.F.S.R.).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

ХАНТЕР, МЁРХЕД. "ИНТЕГРАЦИЯ ТЕОРИИ ИСКУССТВЕННОЙ СРЕДЫ В РАЗРАБОТКУ ЕДИНОГО ПОДХОДА К ПОНИМАНИЮ ВЗАИМОДЕЙСТВИЯ ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ." Археология Евразийских степей, no.5 (October31, 2020): 5–11. http://dx.doi.org/10.24852/2587-6112.2020.5.5.11.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Исследования искусственной среды уже давно изучаются в отдельных областях социальных наук, и предпринимается несколько попыток создания единой теории взаимодействия человека с окружающей средой. Текущий дискурс об искусственной среде оставался фрагментированным между археологами и социальными антропологами. Исследование комплексного подхода теоретических основ теории искусственной среды может оказаться полезным для археологов и социальных антропологов в понимании взаимодействия человека с окружающей средой. Подходы, применяемые как археологами, так и социальными антропологами, обладают уникальными преимуществами, которые, адаптированные вместе, могут обеспечить более сильную концептуализацию и развитие большего за счет исследований взаимоотношений человека с искусственной средой в прошлых и современных обществах. Библиографическме ссылки Blockley, M. 2003. In P. G. Stone, P. G. Planel. (eds). The Constructed Past: Experimental Archaeology, Education and the Public. Routledge,. 16–18. Goody, J. 1971.In Goody, J. (ed.). The Developmental Cycle in Domestic Groups. Cambridge University Press, 347–381.Hodder I. 1979. In American Antiquity. 44 (3), 446–454. Kent, S.1984. Analyzing Activity Areas: An Ethnoarchaeological Study of the Use of Space. University of New Mexico Press. Lawrence, D. L., Low, S. M. 1990. In Annual Review of Anthropology. 1990. 19, 435–505. Lercari, N. 2017. In Digital Applications in Archaeology and Cultural Heritage. 6, 10–17. Micoli L., Guidi G., Angheleddu D., Russo M. 2013. A multidisciplinary approach to 3D survey and reconstruction of historical buildings. Digital Heritage International Congress Proceedings. 241–248. Morgan, L. H. 1965. Houses and House-Life of the American Aborigines. University of Chicago Press. Planel, P. G., Stone, P. G. 2003. In P. G. Stone, P. G. Planel. (eds). The Constructed Past: Experimental Archaeology, Education and the Public. Routledge,. 1–5. Rapoport, A. 1977. Human Aspects of Urban Form. Pergamon. Rapoport, A. 1990. The Meaning of the Built Environment: A Nonverbal Communication Approach. University of Arizona Press. Schiffer, M.B. 1978. In Gould, R. (ed.). Methodological issues in ethnoarchaeology. Explorations in Ethnoarchaeology.. University of New Mexico Press, 1978. Р. 347–381. Sitdikov, A., Badeev, D. 2017. In European Research Studies Journal. S (20), 208−214. Baranov, V. S. 2013. In Baranov, V. S., Valeev R. M., Salikhov R. R., Poluboiarinova M. D., Sharifullin R. F. (eds.). Velikii Bolgar (Great Bolgar). Moscow; Kazan: “Feoriia” Publ., 232–242 (in Russian). Valeev, R. M. 2013. In Baranov, V. S., Valeev R. M., Salikhov R. R., Poluboiarinova M. D., Sharifullin R. F. (eds.). Velikii Bolgar (Great Bolgar). Moscow; Kazan: “Feoriia” Publ., 92–97 (in Russian). Izmailov, I. L. 2013. In Baranov, V. S., Valeev R. M., Salikhov R. R., Poluboiarinova M. D., Sharifullin R. F. (eds.). Velikii Bolgar (Great Bolgar). Moscow; Kazan: “Feoriia” Publ., 55−63 (in Russian). Koval V. Yu. 2016. In Povolzhskaya arkheologiya (Volga River Region Archaeology) 18 (4), 99−124 (in Russian). Mukhametshin, D. G. 2016. In Bocharov, S. G., Sitdikov, A. G. (eds.). Dialog gorodskoi i stepnoi kul'tur na Evraziiskom prostranstve. Istoricheskaia geografi ia Zolotoi Ordy (Dialogue of the Urban and Steppe Cultures in the Eurasian Space. Historical Geography of the Golden Horde). Kazan; Yalta; Kishinev: “Stratum plus” Publ., 121−123 (in Russian). Nigamaev, A. Z. 2017. In Arkheologiia Evraziiskikh stepei (Archaeology of Eurasian Steppes) 3. 239−242 (in Russian). Sharifullin R. F. 2014. In Povolzhskaya arkheologiya (Volga River Region Archaeology) 9 (3), 56−75 (in Russian).

2

Kuminskaya,E.A. "The Outsider Phenomenon in Teenage Groups." Psychological-Educational Studies 9, no.2 (2017): 84–95. http://dx.doi.org/10.17759/psyedu.2017090208.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The article is devoted to the problem of outsidership in groups of younger and older adolescents. We assumed that there are personal qualities that distinguish outsiders from other students, which allows u s t o s peak o f o utsidership a s a s eparate g roup a nd p ersonal phenomenon. The study involved 246 students of Moscow schools of younger and older adolescents, 60 of whom took an outsider position in the group. To test the hypothesis were used: a personal questionnaire for adolescents HSPQ (R. Cattell), questionnaire Emin to determine the level of emotional intelligence (D.V. Lyusin), the technique of " Suggestibility " (O.E. Rybakov). To identify statistical differences, the Student's t-test and the Mann-Whitney Utest were used, p ≤ 0.05. The results of the study s howed that outsiders of adolescence are indeed characterized by a number of personal characteristics that distinguish them from their peers. Differences in personal characteristics of outsiders at different stages of adolescence have their own characteristics.

3

RONG, FENG. "Linearization of holomorphic germs with quasi-parabolic fixed points." Ergodic Theory and Dynamical Systems 28, no.3 (June 2008): 979–86. http://dx.doi.org/10.1017/s0143385707000545.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

AbstractLet f be a germ of a holomorphic diffeomorphism of $\mathbb {C}^n$ with the origin O being a quasi-parabolic fixed point, i.e. the spectrum of dfO consists of 1 and e2iπθj with $\theta _j\in \mathbb {R}\!\setminus \!\mathbb {Q}$. We show that f is locally holomorphically conjugated to its linear part, if f is of some particular form and its eigenvalues satisfy certain arithmetic conditions. When the spectrum of dfO does not consist of any 1’s, this is the classical result of Siegel [C. L. Siegel. Iteration of analytic functions. Ann. of Math.43 (1942), 607–612] and Brjuno [A. D. Brjuno. Analytic form of differential equations. Trans. Moscow Math. Soc.25 (1971), 131–288; 26 (1972), 199–239].

4

Kuleshova,NadezhdaE., AlexanderV.Vvedenskii, ElenaV.Bobrinskaya, and ElenaВ.Rychkova. "Роль структурно-морфологического состояния поверхности платины в кинетических и термодинамических характеристиках процесса адсорбции аниона серина." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.1 (March6, 2019): 72–83. http://dx.doi.org/10.17308/kcmf.2019.21/718.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Исследована адсорбция аниона серина на гладком Pt и Pt(Pt)-электроде. Методом кривых заряжения получены стационарные и кинетические изотермы адсорбции. Установлено, что как на гладком, так и Pt(Pt)-электроде, кинетика исследуемых процессов подчиняется уравнению Рогинского-Зельдовича, а стационарное заполнение описывается изотермой Темкина. При этом адсорбция аниона серина на Pt(Pt) сопровождается диссоциацией адсорбата. Найдены основные термодинамические характеристики (константа адсорбционного и изменение свободной энергии Гиббса) процесса адсорбции аниона серина на обоих электродах. ЛИТЕРАТУРА Damaskin B., Petrii A. O., and Batrakar V.Adsorption of Organic Compounds on Electrodes. Plenum Press, New York, 1973. Sobkowski J., Juzkiewics-Herbish M. Metall/Solution Interface: an Experimental Approach, Modern Aspects of Electrochemistry, no. 31. Eds. by J. O¢ Bockris, R. E. White and B. E. Conway. Plenum Press, New York, London, 1997, p. 1. Frumkin A. N. Isbrannie trudi: Electrodnie processi, [Selected Works: Electrode Processes]. Moscow, Nauka Publ., 1987. 336 p. (in Russ.) Delahey P. Dvoinoi sloi i kinetika elektrodnih processov, [Double Layer and Kinetics of Electrode Processes]. Moscow, Mir Publ., 1967, 351 p. (in Russ.) Gileadi E. and Conway B. in:Modern Aspects of Electrochemistry, no. 3 Eds. by J. O’M. Bockris and B. Conway. Butterworths, London, 1964. Electrocatalysis. Ed. by J. Lipkowski, P. N. Ross. Wiley, VCH, New York, Chichester, Weinheim, Brisbake, Singarope, Toronto, 1998, 376 p. Bockris J. O. M., Shahed U. Khan M. Surface Electrochemistry: a Molecular Level Approach. Plenum Press, New York, London, 1993, 1014 p. Applied Infrared Spectroscopy. By A. Lee Smith. Wiley, Chichester, 1979. Gale J. Spectroelectrochemistry: Theory and Practice. Plenum Press, New York, 1988, p. 189. Tehnika eksperimentalnih rabot po electrohimii, korrosii I poverhnostnoi obrabotke metallov [Technique of Experimental Work on Electrochemistry, Corrosion and Surface Treatment of Metals]. Ed. by A. T. Kuna. Saint Petersburg, Khimiya Publ., vol. , 1994, 560 p. (in Russ.) Lasia A. Electrochemical Impedance Spectroscopy and its Application. Modern Aspects of Electrochemistry. Eds. by B. E. Conway, J. O.` Bockris and R. E. White. Kluwer Acad, Plenum Publ., New York, Boston, Dordrecht, London, Moscow, 1999, p. 143. Metodi ismerenii v elektrohimii [Measurement Methods in Electrochemistry]. Ed. by Eger, A. Zalkind. Moscow, Mir Publ., 1997, 585 p. (in Russ.) Theory of Chemisorption. by J. Smith. Berlin, Springer, 1980, 240 p. Horányi G. Electroanalyt. Chem., 1975, vol. 64, iss. 1, pp. 15-19. https://doi.org/10.1016/0368-1874(75)80108-0 Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. Electroanal. Chem., 1997, vol. 421, iss. 1-2, pp. 179-185. https://doi.org/10.1016/s0022-0728(96)04820-6 Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. Electroanal. Chem., 1997, vol. 421, iss. 1-2, pp. 155-164. https://doi.org/10.1016/s0022-0728(97)00542-1 Huerta F., Morallon A., Vazquez J. L, Quijada C., Berlouis L. Electroanal. Chem., 2000, vol. 489, iss. 1-2, pp. 92-95. https://doi.org/10.1016/s0022-0728(00)00202-3 Shi-Gang Sun,Jian-Lin Yao, Qi-Hui Wu, Zhong-Qun Tian. Langmuir, 2002, vol. 18, iss. 16, pp. 6274-6279. https://doi.org/10.1021/la025817f Tumanova E. A., Safonov A. Yu. Elektrokhimiya [Russian Journal of Electrochemistry], 1998, vol. 34, iss. 2, p. 153. (in Russ.) Marangoni D. G., Smith R. S., Roscoe S. G., Marangoni D. G. J. Chem., 1989, vol. 67, iss. 5, pp. 921-926. https://doi.org/10.1139/v89-141 Ogura K., Kobayashi M., Nakayama M., Miho M. Electroanal. Chem., 1998, vol. 449, iss. 1-2, pp. 101-109. https://doi.org/10.1016/s0022-0728(98)00015-1 Gu Y. J., Chen S. P., Sun S. G., Zhou Z. Y. Langmuir, 2003, vol. 19, iss. 23, pp. 9823-9830. https://doi.org/10.1021/la034758i Huerta F., Morallon E., Cases F., Rodes A., Vazquez J. L., Aldaz A. Electroanal. Chem., 1997, vol. 431, iss. 2, pp. 269-275. https://doi.org/10.1016/s0022-0728(97)00212-x Huerta F., Morallon E., Vazquez J. L., Aldaz A. Electroanal. Chem., 1999, vol. 475, iss. 1, pp. 38-45. https://doi.org/10.1016/0022-0728(91)85503-h Horanyi G. Electroanal. Chem., 1991, vol. 304, iss. 1-2, pp. 211-217. https://doi.org/10.1016/s0022-0728(97)00212-x Kong De-Wen, Zhu Tian-Wei, Zeng Dong-Mei, Zhen Chun-Hua, Chen Sheng-Pei, Sun Shi-Gan. J. Chinese Universitie, 2009, vol. 30, no. 10, p. 2040. Safonova T. Y., Hidirov Sh. Sh., Petrii O. A. Elektrokhimiya [Russian Journal of Electrochemistry], 1984, vol. 20, iss. 12, p. 1666. (in Russ.) Kuleshova N. E., Vvedenskyi A. V., Bobrinskaya E. V. Electrokchimiya [Russian Journal of Electrochemistry], 2018, vol. 54, iss. 7, pp. 592-597. https://doi.org/10.1134/s1023193518070042 Frumkin A. N., Podlovchenko B. I. AN SSSR, 1963, vol. 150, iss. 2, p. 349. (in Russ.) Podlovchenko B. I., Iofa Z. A. Journal fisicheskoi himii [Russian Journal of Physical Chemistry A], 1964, vol. 38, no. 1, p. 211. (in Russ.) Damaskin B. B., Petrii O. A., Tsyrlina G. A. Electrokhimiya [Electrochemistry]. Moscow, Khimiya Publ., 2001, 623 p. (in Russ.) Damaskin B. , Petrii O. A., Vvedenie v electrokhimiceskyu kinetiku [Introduction to Electrochemical Kinetics]. Moscow, Vyshaya Shkola Publ., 1983, 399 p. (in Russ.) Frumkin A. N., Bagotskii V. S., Iofa Z. A. Kabanov B. N. Kinetika elektrodnyh processov [Kinetics of Electrode Processes]. Moscow, Izdat. Moskovs.Universiteta Publ., 1952, 319 p. (in Russ.) Bobrinskaya E. V., Vvedenskyi A. V., Kartashova T. V., Krashenko T. G. Korrosia: materialy i zash*ta [Corrosion: Materials, Protection], 2013, no. 8, pp. 1-8. (in Russ.) Bragin O. V., Liberman A. L. Russian Chemical Reviews, 1970, vol. 39, no. 12, p. 1017. https://doi.org/10.1070/rc1970v039n12abeh002315 Аnderson I. R., Macdonald R. I., Shimoyama Y. Catalysis, 1971, vol. 20, № 2, p. 147. https://doi.org/10.1016/0021-9517(71)90076-5 Levitskii L, Minachev Kh. M. In: Mechanisms of Hydrocarbon Reactions. 1973, Budapest, Academiai Kiado, 1975, Preprint, no. 15, p. 81. Anderson R., Baker B. G. Chemisorption and Reactions on Metallic Films. London, New-York. Acad. Press, 1971, p. 63. Bragin O. V., Preobrazenskii A. V., Liberman A. L., Kazanskii B. A. Kinetica i katalys [Kinetics and Catalysis], 1975, vol. 16, no. 2, p. 472. (in Russ.) Maire G., Corolleur C., Juttard D., Gault F. G. Catalysis, 1971, vol. 21, iss. 2, рp. 250-253. https://doi.org/10.1016/0021-9517(71)90143-6 Corolleur C., Corolleur S., Gault F. G. Catalysis, 1972, vol. 24, iss. 3, pp. 385-400. https://doi.org/10.1016/0021-9517(72)90123-6 Paal Z., Tetenyi P. Chim. Acad. Sci. Hung., 1972, vol. 72, no. 3, p. 277. Barron Y., Maire G., Muller J. M., Gault F. G. Catalysis, 1966, vol. 5, iss. 3, pp. 428-445. https://doi.org/10.1016/s0021-9517(66)80062-3 Muller J. M., Gault F. G. Catalysis, 1972, vol. 24, iss. 2, pp. 361-364. https://doi.org/10.1016/0021-9517(72)90083-8 Contreras A. M., Grunes J., Yan X.-M., Liddle A., Somorjai G. A. Topics in Catalysis. 2006, 39, iss. 3–4, pp. 123-129. https://doi.org/10.1007/s11244-006-0047-0 Khazova A. M., Vasil’ev U. B., Bagotskii V. S. Soviet Electrochemistry, 1967, vol. 3, no. 7, p. 1020. (in Russ.) Podlovchenko B. I., Petuhova R. P.Soviet Electrochemistry, 1972, vol. 8, no. 6, p. 899. (in Russ.)

5

Rudnitskij,G.M. "Studies of variability of circ*mstellar H2O masers." Symposium - International Astronomical Union 122 (1987): 267–68. http://dx.doi.org/10.1017/s0074180900156578.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

From March 1980 to December 1983, the author took part in regular observations of variability of maser radio emission in the H2O line at 22 GHz. The observations were carried out at the 22-meter radio telescope of the P. Lebedev Physical Institute (USSR Academy of Sciences) in Pushchino (Moscow Region). The interval between consecutive observational sessions was usually 1.5–2 months. The observational program included 21 late-type variable stars (Miras and SRs): R Aql, RR Aql, RT Aql, SY Aql, U Aur, NV Aur, RX Boo, VY CMa, S CrB, KY Cyg, NML Cyg, U Her, W Hya, X Hya, R Leo, U Lyn, U Ori, UU Peg, VX Sgr, RS Vir, RT Vir. The results for eight stars ending June 1982 were published by Berulis et alt (1983). A comparison was made between the time dependences of the H2O line radio flux F and the curves of visual and near-infrared brightness of the stars. Miras (R Aql, R Leo, U Ori, U Aur), as a rule, have a rise in F connected with the visual maximum (phase 0), the maximum F occurring at phases 0.1–0.2 (see figure for an example). Not all visual maxima (only one out of each two or three) are accompanied by H2O flares. This Miras! behaviour was also noted earlier in the H2O line by Berulis et al. (1984), Gómez Balboa and Lépine (1986), as well as in the SiO maser line v=1, J=2−1 by Nyman and Olofsson (1986).

6

Polkovnikov,IgorS., ViktoriaV.Panteleeva, and AnatoliyB.Shein. "Анодные процессы на Mn5Si3 –электроде в щелочном электролите." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.1 (March6, 2019): 126–34. http://dx.doi.org/10.17308/kcmf.2019.21/723.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Методами поляризационных и импедансных измерений изучено анодное поведение Mn5Si3-электрода в растворах (0.5–3.0) М NaОН в области от E коррозии до E выделения кислорода включительно. Сделан вывод, что поверхность силицида марганца в щелочном электролите обогащена металлическим компонентом сплава и продуктами его окисления. Установлены кинетические закономерности анодного поведения Mn5Si3, выяснены механизмы растворения и пассивации силицида, определены кинетические параметры реакции выделения кислорода. ЛИТЕРАТУРА Samsonov G. V., Dvorina L. A., Rud' B. M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.) Agladze G. R., Kveselava V. M., Koiava N. Sh. V sb.: Elektrokhimiya margantsa [In: Manganese Electrochemistry], Tbilisi, AN GSSR Publ., 1978, vol. 7, pp. 118–126. (in Russ.) Shein A. B., Zubova E. N. Protection of Metals, 2005, vol. 41, no. 3, pp. 234–242. https://doi.org/10.1007/s11124-005-0034-z Nikolaichuk P. A., Shalyapina T. I., Tyurin A. G. Vestnik YuUrGU, 2010, no. 31, pp. 72–80. (in Russ.) Okuneva T. G., Panteleeva V. V., Shein A. B. Condensed Matter and Interphases, 2016, vol. 18, no. 3, pp. 383–393. URL: http://www.kcmf.vsu.ru/resources/t_18_3_2016_009.pdf (in Russ.) Polkovnikov S., Panteleeva V. V., Shein A. B. Vestnik Permskogo universiteta. Khimiya, 2017, vol. 7, no. 3, pp. 250–259. (in Russ.) Sukhotin A. M., Osipenkova I. G. Zhurnal prikladnoi khimii, 1978, vol. 51, no. 4, pp. 830–832. (in Russ.) Agladze R. I., Domanskaya G. M. V sb.: Elektrokhimiya margantsa, Tbilisi, AN GSSR Publ., 1957, vol. 1, pp. 503–514. (in Russ.) Agladze I., Domanskaya G.M. Zhurnal prikladnoi khimii, 1951, vol. 24, no. 9, pp. 917–514. (in Russ.) Petriashvili L. D. V sb.: Elektrokhimiya margantsa [In: Manganese Electrochemistry], Tbilisi, AN GSSR Publ., 1978, vol. 7, pp. 127–137. (in Russ.) Poirbaix M. Atlas of Electrochemical Equilibria in Aqueous solutions. Oxford, Perqamon Press, 1966, p. 664. Sukhotin A. M. Spravochnik po elektrokhimii [Handbook of Electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.) Remi G. Kurs neorganicheskoi khimii [Course of Inorganic Chemistry]. Moscow, Mir Publ., 1972, 824 p. (in Russ.) Myamlin V. A., Pleskov Yu. V. Elektrokhimiya poluprovodnikov [Electrochemistry of Semiconductors]. Moscow, Nauka Publ., 1965, 338 p. (in Russ.) Gel'd P. V., Sidorenko F. A. Silitsidy perekhodnykh metallov chetvertogo perioda [Transition Metal Silicides of the Fourth Period]. Moscow, Metallurgiya Publ., 1981, 632 p. (in Russ.) Keddam M., Lizee J.-F., Pallotta C., Takenouti H. Electrochem. Soc., 1984, vol. 131, no. 9, p. 2016. https://doi.org/10.1149/1.2116010 Hepel M., Tomkiewicz M. Electrochem. Soc., 1985, vol. 132, no. 1, p. 32. https://doi.org/10.1149/1.2113786 Rabinovich V. A., Khavin Z. Ya. Kratkii khimicheskii spravochnik [Brief Chemical Hand Book]. Leningrad, Khimiya, Publ., 1978, 392 p. (in Russ.) Polkovnikov I. S., Shaidullina A. R., Panteleeva V. V., Shein A. B. Vestnik Permskogo universiteta. Khimiya, 2018, vol. 8, no. 3, pp. 325–341. DOI: 17072/2223-1838-2018-3-325-341 (in Russ.) Odynets L. L., Orlov V. M. Anodnye oksidnye plenki [Anodic Oxide Films]. Leningrad, Nauka Publ., 1990, 200 p. (in Russ.) Popov Yu. A. Teoriya vzaimodeistviya metallov i splavov s korrozionno-aktivnoi sredoi [Theory of Interaction of Metals and Alloys with a Corrosive-active Medium]. Moscow, Nauka Publ, 1995, 200 p. (in Russ.)

7

sem*nov,VictorN., AleksandrV.Naumov, TatyanaV.Samofalova, and NadezhdaM.Ovechkina. "Осаждение слоев сульфидов кадмия и свинца из тиосульфатно-тиомочевинных комплексов и исследование их свойств." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.2 (June14, 2019): 240–48. http://dx.doi.org/10.17308/kcmf.2019.21/762.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Представлены результаты исследования пленок сульфидов кадмия и свинца, осажденных методом пиролиза аэрозоля из водных растворов тиомочевинно-тиосульфатных координационных соединений при температуре 400 °С. Исследование ТТКС показало, что в водных растворах, содержащих нитрат кадмия, тиосульфат натрия и тиомочевину с разными молярными соотношениями компонентов, образуются координационные соединения [Cd(SCN2H4)2(bi-S2O3)], а в соответ ствующих по составу растворах нитрата свинца формируются комплексы [Pb(SCN2H4)(bi-S2O3)(H2O)]. Методом инфракрасной спектроскопии установлено, что при образовании смешанных ТТКС свинца, а также кадмия, осуществляется монодентатная координация тиомочевины к катиону металла через атом серы, а тиосульфат-ион координируется бидентатно через серу и кислород. С помощью рентгенофазового анализа установлено, что независимо от соотношения компонентов в исходномрастворе пленки сульфида кадмия кристаллизуются в модификации вюртцита, а пленки сульфида свинца – в кубической структуре. Определена оптическая ширина запрещенной зоны синтезированных пленок, составляющая 2.4±0.01 эВ для сульфида кадмия и 0.50–0.56 эВ для сульфида свинца REFERENCES sem*nov V. N., Naumov A. V. Protsessy napravlennogo sinteza plenok sul’fidov metallov iz tiokarbamidnykh koordinatsionnykh soedineniy [Processes of the directed synthesis of metal sulfi de fi lms from thiocarbamide coordination compounds]. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 2000, no. 2, pp. 50–55. (in Russ.) sem*nov V. N., Naumov A. V. Thermal decomposition of cadmium thiourea coordination compounds. Russian Journal of General Chemistry, 2001, v. 71(4), pp. 495–499. https://doi.org/10.1023/A:1012306512566 Tuhtaev R. K., Boldyrev, V. V., Gavrilov A. I., Larionov S. V., Mjachina L. I., Savel’eva Z. A. Sintez sul’fi dov metallov iz serosoderzhashchikh kompleksnykh soedineniy metodom samorasprostranyayushchegosya goreniya [Synthesis of metal sulfi des from sulfur-containing complex compounds by self-propagating combustion]. Inorganic Materials, 2002, v. 38(10), pp. 1173–1180. (in Russ.) Markov V. F., Maskaeva L. N., Ivanov P. N. Gidrohimicheskoe osazhdenie plenok sul’fi dov metallov: modelirovanie i jeksperiment [Hydrochemical deposition of metal sulfi de fi lms: modeling and experiment]. Ekaterinburg, Ural Branch of the Russian Academy of Sciences Publ., 2006, 217 p. (in Russ.) sem*nov V. N., Vlasenko N. V. Protsessy kompleksoobrazovaniya v sistemakh tiomochevina – kadmieva sol’ kislorodsoderzhashchey kisloty [Complexation processes in the systems of thiourea – cadmium salt of oxygen-containing acid]. Russian Journal of Inorganic Chemistry, v. 37(4), pp. 929–933. (in Russ.) Ugaj Ja. A., sem*nov V. N., Averbah E. M., Shamsheeva I. L. Issledovanie vzaimodeystviya soley kadmiya s tiomochevinnoy pri poluchenii plenok sul’fi da kadmiya [Investigation of the interaction of cadmium salts with thiourea in the preparation of cadmium sulfi de fi lms]. Journal of Applied Chemistry of the USSR, 1988, v. 61(11), pp. 2409–2414. (in Russ.) Egorov N. B., Eremin L. P., Larionov A. M., Usov V. F. Prevrashchenie tiosul’fato-tiomochevinnykh kompleksov svintsa pri nagrevanii [The transformation of thiosulfate-thiourea lead complexes when heated]. Izvestija Tomskogo politehnicheskogo universiteta, 2010, v. 317(3), pp. 99–102. (in Russ.) Egorov N. B., Usov V. F., Fiterer I. P., Eremin L. P., Larionov A.M. Thiosulfatothiourea lead complexes. Russian Journal of Inorganic Chemistry, 2008, v. 53(1), pp. 117–122. https://doi.org/10.1134/S0036023608010166 Powder Diffraction File. Swarthmore: Joint Committee on Powder Diffraction Stan-dards, 1996. 10. Uhanov Ju. I. Opticheskie svojstva poluprovodnikov [Optical properties of semiconductors], Moscow, Nauka Publ., 1977, 367 p. (in Russ.) Uhanov Ju. I. Opticheskie svojstva poluprovodnikov [Optical properties of semiconductors], Moscow, Nauka Publ., 1977, 367 p. (in Russ.) Ravich Ju. I., Efi mova B. A., Smirnov I. A. Metody issledovanija poluprovodnikov v primenenii k hal’kogenidam svinca PbTe, PbSe, PbS [Methods of semiconductor research as applied to lead chalcogenides PbTe, PbSe, PbS]. Moscow, Nauka Publ., 1968, 384 p. (in Russ.) Haritonov Ju. Ja., Brega V. D., Ablov A. V. Russian Journal of Inorganic Chemistry, 1971, v. 16(2), pp. 572–573. (in Russ.) Haritonov Ju. Ja., Brega V. D., Ablov A. V., Proskina N. N. Russian Journal of Inorganic Chemistry, 1974, v. 19(8), pp. 2166–2177. (in Russ.) Freedman A. N., Straughan B. P. Vibrational spectra and structures of some thiosulphate complexes. Acta, 1971, v. 27A, pp. 1455–1465. https://doi.org/10.1016/0584-8539(71)80095-8 Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 4th ed. John Wiley & Sons, 1986. 245 p. Babichev A. P., Babushkina N. A., Bratkovskij A. M. Fizicheskie velichiny: Spravochnik [Physical quantities: Handbook]. Moscow, Jenergoatomizdat Publ., 1991, 1231 p. (in Russ.) Samsonov V. G., Drozdova S. V. Sul’fi dy [Sulphides]. Moscow, Metallurgiya Publ., 1972, pp. 50–55. (in Russ.) Karnushina V. A., sem*nov V. N., Lukin A. N., Ovechkina N. M., Nikitin L. M. Properties of led sulfi de f i l m s d e p o s e d f r o m a c o o r d i n a t i o n [Pb(N2H4CS)2(CH3COO)2 ]. Condensed matter and interphases , 2017, v. 19(2), pp. 215–221. (in Russ.)

8

Любимова, Світлана. "Etymological Memory of a Word in Designating Sociocultural Stereotype." East European Journal of Psycholinguistics 4, no.1 (June27, 2017): 140–49. http://dx.doi.org/10.29038/eejpl.2017.4.1.lyu.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The article presents the semantic history of the word flapper that denotes social stereotype of American culture. Being a multifaceted phenomenon of semantic cognition, a sociocultural stereotype presents a condensed and coded information that develops on the background of a cultural context. The semantic analysis from diachronic perspective sets up a correspondence of Latin origin of the word flapper with Indo-European stem that produced a number of words in Germanic languages. The cognate words of related languages reveal conformity of negative connotations determined by attitude to human weakness in different forms of its manifestations. This presumes historically determined negative connotation of the word flapper. The initial designation was motivated by kinetic characteristic of the object – a vertical movement. The meaning “a young and daring American girl of the 1920s” of the word flapper was semantically motivated. As it was stated, at the moment of designation, youth and immaturity of a girl were conceived of a fledgling image, that traditionally symbolizes inexperience of a youngster. This zoomorphic metaphor acts as the source of categorization of a cultural and social phenomenon “Flapper”. References Апресян Ю. Д. Избранные труды: Т. 1: Лексическая семантика. Синонимическиесредства языка. М.: Языки русской культуры, 1995.Apresyan, Yu. D. (1995). Izbrannyie Trudy: T.1. Leksicheskaya Semantika.Sinonimicheskie Sredstva Yazyka [Lexical Semantics. Synonymic Means of Language].Moscow: Yazyki Russkoy Kultury. Арутюнова Н. Д. Язык и мир человека. Часть IV: В сторону семиотики и стилистики.М.: Высшая школа, 1999.Arutyunova, N. D. (1999). Yazyk i Mir Cheloveka. P. IV: V Storonu Semiotiki i Stilistiki[Language and Human World. Part 4: Towards Semiotics and Stylistics]. Moscow:Vysshaya Shkola. Гумбольдт В. Избранные труды по языкознанию. М.: Прогресс, 1984.Humboldt, W. (1984). Izbrannyie Trudy po Yazyikoznaniyu [Selected Works inLinguistics]. Moscow: Progress. Jackson, F. (1998). From Metaphysics to Ethics. Oxford: Oxford University Press. Кифер Ф. О пресуппозициях / Новое в зарубежной лингвистике. М. : 1978, 337–353.Kiefer, F. (1978). O presuppozitsiyah [On Presuppositions]. In: Novoe v Zarubezhnoylingvistike. (337-353), T. M. Nikolayeva, Ed. Moscow: Progress. Laurence, S., Margolis, E. (2003). Concepts and Conceptual Analysis. Philosophy andPhenomenological Research, 67(2), 253–282. McRae, K.; Jones, M. Semantic Memory. (2013). The Oxford Handbook of CognitivePsychology. New York, NY: Oxford University Press, 206–216. Ogden, C.K, Richards, I.A. (1952). The Meaning of meaning. In: A Study of the Influenceof Language upon Thought and of The Science of Symbolism. With Supplementary Essaysby B. Malinowski and F. G. Crookshank. London: Routledge & Kegan Paul. Partridge, E. (1938).The World of Words: An Introduction to Language in General and toEnglish and American in Particular. London: George Routledge & Sons. Пирс Ч.С. Избранные произведения. М.: Логос, 2000.Peirce, Ch. S. (2000). Izbrannyie Proizvedeniya [Selected Works]. Moscow: Logos. Потебня А. А. Из записок по русской грамматике. М.: Изд-во Мин-ва просвещенияРСФСР, 1958. Potebnya, A. A. (1958). Iz zapisok po Russkoy Grammatike [From the Notes on RussianGrammar]. Moscow: Ministry of Education of RSFSR. Quiles, C. A., Lopez-Menchero, F. (2009). Grammar of Modern Endo-European. IndoEuropean Language Association. Stalnaker, R. C. (1974). Pragmatic Presuppositions. In: Semantics and Philosophy. (pp.197-230). M. Munitz and P. Unger, (Eds.). N.Y.: New York University Press. Taylor, J. R. (2006). Polysemy and lexicon. In: Cognitive Linguistics: Current ApplicationsAnd Future Perspectives. (pp. 51-81), G. Kristiansen, M. Achard and R. Dirven (eds.).Berlin–New York: Monton de Gruyter. Телия В. Н. Коннотативный аспект семантики номинативных единиц. М.: Наука,1986.Teliya, V. N. (1986). Konnotativnyiy Aspekt Semantiki Nominativnyh Yedinits [ConnotativeAspect in the Meaning of Denotative Units]. Moscow: Nauka. Urban, W. M. (2013). Language and Reality. Philosophy of Language and the Principles ofSymbolism. London and New York: Routledge Taylor and Francis Group. Sources A Comprehensive Etymological Dictionary of the English Language (1966). Vol. I. Dr.Ernest Klein. Barking, Essex: Elsevier Publishing Company. A Dictionary of Slang and Unconventional English. (1937). E. Partidge. London:Routledge. Chamber’s Dictionary of Etymology. (1999). R. K. Barnhart, Ed. N.Y.: Wilson. Crawfurd, O. A. (1895). A Year of Sport and Natural History. Shooting, Hunting,Coursing, Falconry. London: Chapman and Hall. Retrieved from:https://ia600205.us.archive.org/2/items/cu31924022547263/cu31924022547263.pdf Dalzell, T. (1996). Flappers to Rappers. American Youth Slang. Springfield,Massachusetts: Merriam Webster. Das großen Wörterbuch den Sprach in 10 Bänden, Band 3. (1999). Leipzig–Wien–Zürich:Dudenverlag, Mannheim. Deutsches Wörterbuch von Jakob Grimm und Wilhelm Grimm (Nachdruck derErstausgabe 1862). (1999). Band 3. München: Lizenzausgabe des Deutschen TashenbuchVerlages. Duden Deutsches Universal Wörterbuch. (2001). Leipzig–Wien–Zürich: Dudenverlag,Mannheim. Голландско-русский словарь. Под общ. руководством С. А. Миронова. М.: Гос.изд-во ин. и нац. словарей, 1954 Gollandsko-russkiy slovar [Dutch-Russian Dictionary]. (1954). Pod obsch. rukovodstvomS. A. Mironova. M. : Gos. izd-vo in. i nats. Slovarey. Green, R. (1970). The Revels Plays. James the IV. Ed. by N. Sandlers. Welwyn GardenCity, Herts: The Broad Water Press. Indogermanisches Etymologishes Woerterbuch. (1959). Julius Pokorny, (ed). BandI. Bern: Francke. Manipulus Vocabulorum: a Rhyming Dictionary of the English Language. (2001).Ed. H. B. Wheatley. Elibron Classics book a facsimile reprint of a 1867 edition by N. Trübner& Co. London: Adamant Media Corporation. Maugham, W. S. (2007). Of Human Bondage. Winnetka, CA: Norilana. Норвежско-русский словарь. Сост. В. Д. Аракин. М.: Гос. изд-во ин. и нац.словарей, 1963

9

Zavrazhnov, Alexander Yu, AlexanderV.Naumov, EkaterinaN.Malygina, and AndrewV.Kosyakov. "Давление насыщенного пара монохлорида индия по данным спектрофотометрии и нуль -манометрии." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.1 (March6, 2019): 60–71. http://dx.doi.org/10.17308/kcmf.2019.21/717.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Измерены спектры поглощения пара монохлорида индия, находящегося в состояниях насыщенного и ненасыщенного пара относительно расплава InCl в присутствии расплава металлического индия. Спектры исследованы в интервале длин волн 200 – 400 nm и диапазоне температур 225 – 850 °C. Показано, что в этих условиях пар состоит из молекул InCl и в пределах чувствительности эксперимента не содержит других молекулярных форм хлоридов индия. В ходе нуль-манометрического эксперимента найдена температурная зависимость ln pInCl = = – A/T + b давления насыщенного пара в трехфазном равновесии LIn – LInCl – V, параметры которой составили: A = – 10255 ± 69 К, b = 10,95 ± 0.08 (давление – относительно стандартного 1 atm). Показано, что угловой коэффициент A хорошо согласуется с угловым коэффициентом температурной зависимости коэффициента поглощения ln Tk() = – A/T + B() при различных длинах волн. Это позволяет рассматривать высокотемпературную спектрофотомерию пара как альтернативу прямому манометрическому эксперименту. При сопоставлении манометрических и спектрофотометрических данных определены значения молярного коэффициента экстинкции InCl в ненасыщенном паре для максимумов полос поглощения. Найдено, что этот коэффициент слабо линейно зависит от температуры, убывая или возрастая на разных длинах волн. ИСТОЧНИК ФИНАНСИРОВАНИЯ Работа выполнена при финансовой поддержке РФФИ, проект 18-33-00900-мол-а. ЛИТЕРАТУРА Sen D., Heo N., Sef K. Phys. Chem. C, 2012, vol. 116, no. 27, pp. 14445–14453. https://doi.org/10.1021/jp303699u Kitsinelis S., Zissis G., Fokitis E. Physics D: Appl. Phys., 2009, vol. 42, p. 045209 (8 pp). https://doi.org/10.1088/0022-3727/42/4/045209 Hayashi D., Hilbig R., Körber A., et al. Phys. Letters, 2010, vol. 96, p. 061503. https://doi.org/10.1063/1.3318252 Binnewies M., Schmidt M., Schmidt P. Anorg. Allg. Chem., 2017, vol. 643, pp. 1295–1311. https://doi.org/10.1002/zaac.201700055 Zavrazhnov A. Y., Turchen D. N., Naumov A. V., Zlomanov V. P. Phase Equilibria., 2003, vol. 24, no. 4, pp. 330-339. https://doi.org/10.1361/105497103770330316 Fedorov P. I., Akchurin R. Kh. Indium. Moscow, Nauka Publ., 2000, 276 p. (in Russ.) Zavrazhnov A. Yu., Naumov A. V., Pervov V. S., Riazhskikh M. V. Thermochimica Acta, 2012, vol. 532, pp. 96–102. https://doi.org/10.1016/j.tca.2010.10.004 Zavrazhnov A. Yu., Naumov A. V., Sergeeva A. V., Sidei V. I. Inorganic Materials, 2007, vol. 43, no. 11, pp. 1167–1178. https://doi.org/10.1134/s0020168507110039 Zavrazhnov A. Yu, Kosyakov A. V, Sergeeva A. V., Berezin S. S. Condensed Matter and Interphases, vol. 17, no. 4, pp. 417 – 436. URL: https://journals.vsu.ru/kcmf/article/view/87/190 (in Russ.) Brebrick R. F. Phase Equilibria and Diffusion, 2005, vol. 26 no. 1, pp. 20 – 21. https://doi.org/10.1007/s11669-005-0054-z Kuniga Y., Hosaka M. Cryst. Growth, 1975, vol. 28, pp. 385–391. https://doi.org/10.1016/0022-0248(75)90077-9 Froslie H. M., Winans J. G. Rev., 1947, vol. 72, iss. 6, pp. 481–491. https://doi.org/10.1103/physrev.72.481 Jones W. E., McLean T. D. Molecular Spectroscopy, 1991, vol. 150, iss. 1, pp. 195-200. https://doi.org/10.1016/0022-2852(91)90202-l Vempati S. N., Jones W. E. Molecular Spectroscopy, vol. 132, iss. 2, pp. 458–466. https://doi.org/10.1016/0022-2852(88)90339-6 Kunia Y., Hosada S., Hosuka M. Denki Kagaku – Technical Paper, 1974, vol. 42, pp. 20–25. Robert C. Phys. Acta, 1936, vol. 9, pp. 405–436. Fedorov P. I., Mokhosoyev M. V. Gallium, Indium and Thallium Chemistry. Novosibirsk, Nauka Publ., 1977, 224 p. (in Russ.) Dritz M. E., Budberg P. ., Burkhanov G. S., et al. Properties of the Elements. Handbook, ed. by Dritz M. E. Moscow, Metallurgia Publ., 1985, 672 p. (in Russ.) Bronnikov A. D., Valilevskaya I., Niselson L. A. Izv. AN. SSSR. Metally, 1974, no. 4, pp. 54–57. (in Russ.) Zavrazhnov A. Yu. Doct. chem. sci. Voronezh, 2004, 340 p. Zavrazhnov A. Yu. Russian Journal of Inorganic Chemistry, 2003, vol. 48, no. 10, pp. 1577–1590. (in Russ.) Brebrick R. F., Su C.-H. Phase Equilibria, 2002, vol. 23, 2002, pp. 397–408. https://doi.org/10.1361/105497102770331343 Suvorov A. V. Thermodynamicheskaya chimia paroobraznogo sostoyania [Thermodynamic Chemistry Vapor State]. Leningrad, Chimia Publ., 1970, 208 p. (in Russ.)

10

Aliev,ZiyaS. "THE AV–BVI–I TERNARY SYSTEMS: A BRIEF REVIEW ON THE PHASE EQUILIBRIA REVIEW." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.3 (September26, 2019): 338–49. http://dx.doi.org/10.17308/kcmf.2019.21/1149.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

This paper presents a brief review on the ternary phase equilibria in the ternary AV–BVI–I systems (AV = Sb, Bi; BVI = S, Se, Te). These systems includes the series of ternary compounds those are very attractive source materials for photo-, thermos- and ferroelectric energy transformation along the recently discovered semiconductors that exhibit Rashba-type spin splitting in their surface states. In the Rashba semiconductors, a unique toroidal 3D Fermi surface appears on the crystal surface, which leads to unusual properties that make it possible to realize unique electronic devices based on these compounds. The thorough knowledge on the ternary phase diagram of these systems shed light on the chemical and structural design of new multifunctional materials with tunable properties. This knowledge is very important whenfocusing on the chemistry of such multifunctional materials based on complex element systems. REFERENCES Audzijonis A., Sereika R., Ћaltauskas R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun., 2008, v. 147(3–4), pp. 88–89. https://doi.org/10.1016/j.ssc.2008.05.008 Łukaszewicz K., Pietraszko A., Kucharska M. Diffuse Scattering, Short Range Order and Nanodomains in the Paraelectric SbSI. Ferroelectrics, 2008, v. 375(1), pp.170–177. https://doi.org/1080/00150190802438033 Audzijonis A., Gaigalas G., Ţigas L., Sereika R., Ţaltauskas R., Balnionis D., Rëza A. Electronic structure and optical properties of BiSeI crystal. Phys. Status Solidi B, 2009, v. 246(7), pp. 1702–1708. https://doi.org/10.1002/pssb.200945110 Audzijonis A., Zaltauskas R., Sereika R., Zigas L., Reza A. Electronic structure and optical properties of BiSI crystal. J. Phys. Chem. Solids. 2010, v. 71(6), pp. 884-891. https://doi.org/10.1016/j.jpcs.2010.03.042 Ganose A. M., Butler K. T., Walsh A., Scanlon D. O. Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials. J. Mater. Chem. A, 2016, v. 4(6), pp. 2060-2068. https://doi.org/10.1039/c5ta09612j Gerzanich E.I., Fridkin V.M. Ferroelectric materials of type AVBVICVII. Moscow, Nauka Publ., 1982. (in Russ.) Pierrefeu A., Steigmeier E. F., Dorner B. Inelastic neutron scattering in SbSI near the ferroelectric phase transformation. Phys. Status Solidi B, 1977, v. 80(1), pp. 167–171. https://doi.org/10.1002/pssb.2220800119 Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B, 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 Rao K. K., Chaplot S. L. Dynamics of Paraelectric and Ferroelectric SbSI. Phys. Status Solidi B, 1985, v. 129(2), pp. 471–482. https://doi.org/10.1002/pssb.2221290204 Grigas J., Talik E., Lazauskas V. Splitting of the XPS in ferroelectric SbSI crystals. Ferroelectrics, 2003, v. 284(1), pp. 147–160. https://doi.org/10.1080/00150190390204790 Audzijonis A., Ћaltauskas R., Ћigas L., Vinokurova I. V., Farberovich O. V., Pauliukas A., Kvedaravičius A. Variation of the energy gap of the SbSI crystals at ferroelectric phase transition. Physica B, 2006, v. 371(1), pp. 68–73. https://doi.org/10.1016/j.physb.2005. 09.039 Nowak M., Nowrot A., Szperlich P., Jesionek M., Kępińska M., Starczewska A., Mistewicz K., Stróż D., Szala J., Rzychoń T., Talik E., Wrzalik R. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A, 2014, v. 210, pp. 119–130. https://doi.org/10.1016/j.sna.2014.02.012 Ishizaka K., Bahramy M. S., Murakawa H., Sakano M., Shimojima T., Sonobe T., Koizumi K., Shin S., Miyahara H., Kimura A., Miyamoto K., Okuda T., Namatame H., Taniguchi M., Arita R., Nagaosa N., Kobayashi K., Murakami Y., Kumai R., Kaneko Y., Onose Y., Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater., 2011, v. 10(7), pp. 521–526. https://doi.org/10.1038/nmat3051 Landolt G., Eremeev S. V., Koroteev Yu. M., Slomski B., Muff S., Neupert T., Kobayashi M., Strocov V. N., Schmitt T., Aliev Z. S., Babanly M. B., Amiraslanov I. R., Chulkov E. V., Osterwalder J., Dil J. H. Phys. Rev. Lett., 2012, v. 109(11), p. 116403. https://doi.org/10.1103/physrevlett.109.116403 Bahramy M. S., Yang B.-J., Arita R., Nagaosa N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nature Commun., 2012, v. 3(1), p. 679. https://doi.org/10.1038/ncomms1679 Landolt G., Eremeev S. V., Tereshchenko O. E., Muff S., Slomski B., Kokh K. A., Kobayashi M., Schmitt T., Strocov V. N., Osterwalder J., Chulkov E. V., Dil J. H. Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys., 2013, v. 15(8), p. 085022. https://doi.org/10.1088/1367-2630/15/8/085022 Fiedler S., Bathon T., Eremeev S. V., Tereshchenko O. E., Kokh K. A., Chulkov E. V., Sessi P., Bentmann H., Bode M., Reinert F. Termination-dependent surface properties in the giant-Rashba semiconducto rsBiTeX(X=Cl, Br, I). Phys. Rev. B., 2015, v. 92(23), p. 235430. https://doi.org/10.1103/physrevb.92.235430 Bahramy M. S., Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv. Mater., 2017, v. 29(25), p. 1605911. https://doi.org/10.1002/adma.201605911 Gottstein G. Physical Foundations of Materials Science. Springer-Verlag Berlin Heidelberg, XIV, 2004, 502 p. Babanly M. B., Chulkov E. V., Aliev Z. S., Shevelkov A. V., Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalcogenides. Russ. J. Inorg. Chem., 2017, v. 62(13), pp. 1703–1729. https://doi.org/10.1134/s0036023617130034 Žičkus K., Audzijonis A., Batarunas J., Šileika A. The fundamental absorption edge tail of ferroelectric SbSI. Phys. Status Solidi B., 1984, v. 125(2), pp. 645–651. https://doi.org/10.1002/pssb.2221250225 Belyayev L. M., Lyakhovitskaya V. A., Netesov G. B., Mokhosoev M.V., Aleykina S.M. Synthesis and crystallization of antimony sulfoiodide. Izv. Akad. Nauk, Neorg. Mater., 1965, v. 1(12), pp. 2178–2181. (in Russ.) Ryazantsev A. A., Varekha L. M., Popovkin B. A., Lyakhovitskaya V. A., Novoselova A. V. Р–T–x phase diagram of the SbI3–Sb2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(7), pp. 1296–1297 (in Russ.) Aliev Z. S., Musayeva S. S., Babanly M. B. The phase relationships in the Sb–S–I system and thermodynamic properties of the SbSI. J. Phase Equilib. Diffus., 2017, v. 38, pp. 887–896. https://doi.org/10.1007/s11669-017-0601-4 Lukaszewicz K., Pietraszko A., Stepen’ Damm Yu., Kajokas A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I, II and III. Pol. J. Chem., 1997, v. 71, pp. 1852–1857. Itoh K., Matsunaga H. A study of the crystal structure in ferroelectric SbSI. Zeitschrift für Krist., 1980, v. 152(3-4), p. 309–315. https://doi.org/10.1524/zkri.1980.152.3-4.309 Aliev Z. S., Musaeva S. S., Babanly D. M., Shevelkov A. V., Babanly M. B. Phase diagram of the Sb–Se–I system and thermodynamic properties of SbSeI. J. Alloys Compd., 2010, v. 505(2), pp. 450–455. https://doi.org/10.1016/j.jallcom.2010.06.103 Belotskiy D. P., Lapshin V. F., Boychuk R. F., Novalkovskiy N. P. The Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1972, v. 8(3), pp. 572–574. (in Russ.) Dolgikh V. A., Popovkin B. A., Odin I. N., Novoselova A. V. Р–Т–х phase diagram of the Sb2Sе3–SbI3 system. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(6), pp. 919–922. (in Russ.) Rodionov Yu. I., Klokman V. V., Myakishev K. G. The solubility of semiconductor compounds AIIBVI, AIVBIV and AVBVI in halide melts. Russ. J. Inorg. Chem., 1973, v. 17(3), pp. 846–849. (in Russ.) Chervenyuk G. I., Niyger F. V., Belotskiy D. P., Novalkovskiy N. P. Investigation of the phase equilibria in the SbSI–Sb, SbSI–S, SbSI–I systems. Izv. Akad. Nauk, Neorg. Mater., 1977, v. 13(6), pp. 989–991. (in Russ.) Aliev Z. S., Babanly M. B., Babanly D. M., Shevelkov A. V., Tedenac J. C. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI. Int. J. Mat. Res., 2012, v. 103(3), pp. 290–295. https://doi.org/10.3139/146.110646 Belotskiy D. P., Antipov I. N., Nadtochiy V. F., Dodik S.M. Physicochemical investigations of the PbI2–SnI2, CdI2–ZnI2, BiI3–SbI3, Sb2Te3–SbI3, Bi2Te3–BiI3 systems. Izv. Akad. Nauk, Neorg. Mater., 1969, v. 5(10), pp. 1663–1667. (in Russ.) Belotskiy D. P., Dodik S. M., Antipov I. N., Nefedov Z. I. Synthesis and investigation of the telluroiodides of antimony and bismuth. Ukr. Chem. J., 1970, v. 36, pp. 897–900. (in Russ.) Aleshin V. A., Valitova N. R., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the antimony iodide system – antimony telluride. Izv. Akad. Nauk, Zhur. Fiz. Khim., 1974, v. 48, p. 2395. (in Russ.) Valitova N. R., Popovkin B. A., Novoselova A. V., Aslanov L. A. The compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9, pp. 2222–2223. (in Russ.) Turyanitsa I. D., Olekseyuk I. D., Kozmanko I. I. Investigation of the Sb2Te3–SbI3 system and properties of the compound SbTeI. Izv. Akad. Nauk, Neorg. Mater., 1973, v. 9(8), pp. 433–1434. (in Russ.) Voutsas G. P., Rentzeperis P. J. The crystal structure of antimony selenoiodide, SbSeI. Zeitschrift für Kristallographie, 1983, v. 161(1–2), pp. 111–118. https://doi.org/10.1524/zkri.1982.161.1-2.111 Kikuchi A., Oka Y., Sawaguchi E. Crystal Structure Determination of SbSI. J. Phys. Soc. Jap., 1967, v. 23(2), pp. 337–354. https://doi.org/10.1143/jpsj.23.337 Kichambare P., Sharon M. Preparation, characterization and physical properties of mixed Sb1–xBixTeI. Solid State Ionics, 1997, v. 101–103, pp. 155–159. https://doi.org/10.1016/s0167-2738(97)84024-6 Shevelkov A. V., Dikarev E. V., Shpanchenko R. V., Popovkin B.A. Crystal structures of bismuth tellurohalides BiTeX (X = Cl, Br, I) from X-ray powder diffraction data. J. Solid State Chem., 1995, v. 114(2), pp. 379–395. https://doi.org/10.1006/jssc.1995.1058 Aliev Z. S., Jafarov Y. I., Jafarli F. Y., Shevelkov A. V., Babanly M. B. The phase equilibria in the Bi–S–I ternary system and thermodynamic properties of the BiSI and Bi19S27I3 ternary compounds. J. Alloys Compd. 2014, v. 610, pp. 522–528. https://doi.org/10.1016/j.jallcom.2014.05.015 Ryazantsev T. A., Varekha L. M., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the BiI3–Bi2S3 system. Izv. Akad. Nauk, Neorg. Mater., 1970, v. 6, pp. 1175–1179. (in Russ.) Oppermann H., Petasch U. Zu den pseudobinären Zustandssystemen Bi2Ch3-BiX3 und den ternären Phasen auf diesen Schnitten (Ch = S, Se, Te; X = Cl, Br, I), I: Bismutsulfi dhalogenide/The Pseudobinary Systems Bi2Ch3–BiX3 and the Ternary Phases on their Boundary Lines (Ch = S, Se, Te; X = Cl, Br, I), I: Bismuth Sulfi de Halides. Z. Naturforsch. 2003, v. 58b, pp. 725–740. https://doi.org/10.1515/znb-2003-0803 (in German) Haase-Wessel W. Die Kristallstruktur des Wismutsulfi djodids (BiSJ). Naturwissenschaften, 1973, v. 60, pp. 474–474. https://doi.org/10.1007/bf00592859 (in German) Miehe G., Kupcik V. Die Kristallstruktur des Bi(Bi2S3)9J3. Naturwissenschaften, 1971, v. 58, pp. 219–219. DOI: 10.1007/bf00591851 (in German) Turjanica I. D., Zajachkovskii N. F., Zajachkovskaja N. F., Kozmanko I. I. Investigation of the BiI3–Bi2Se3 system. Izv. Akad. Nauk, Neorg. Mater., 1974, v. 11(10), p. 1884. (in Russ.) Belotskii D. P., Lapsin V. F., Baichuk R. F. The BiI3–Bi2Se3 system. Izv. Akad. Nauk Neorg. Mater., 1971, v. 7(11), p. 1936. (in Russ.) Dolgikh V. A., Odin I. N., Popovkin B. A., Novoselova A. V. P-T-x phase diagram of the BiI3–Bi2Se3 system. Vestn. Mosk. Univ., Dep. VINITI., 1973, v. 23(3), Dep. No. 5683-73. (in Russ.) Dolgikh V. A., Popovkin B. A., Ivanova G. I., Novoselova A. V. Investigation of the sublimation of the SbSeI and BiSeI. Izv. Akad. Nauk, Neorg. Mater., 1975, v. 11(4), p. 637. (in Russ.) Petasch U., Goebel H., Oppermann H. Untersuchungen zum quasibinären System Bi2Se3/BiI3. Z. Anorg. Allg. Chem., 1998, v. 624, p. 1767. https://doi.org/10.1002/(sici)1521-3749(1998110)624:11<1767::aidzaac1767>3.0.co;2-t (in German) Doenges E. Z. Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. II. Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon(III)-selenid Mit 2 Abbildungen. Anorg. Allg. Chem., 1950, v. 263(5–6), pp. 280–291. https://doi.org/10.1002/zaac.19502630508 (in German) Braun T. P., DiSalvo F. J. Bismuth selenide iodide. Acta Crystallogr., 2000, v. C56(1), pp. e1–e2. https://doi.org/10.1107/s0108270199016017 Chervenyuk G. I., Babyuk P. F., Belotskii D. P., Chervenyuk T. G. Phase equilibria in the Bi–Se–I system along the BiSeI–Bi and BiSeI–BiI sections. Izv. Akad. Nauk, Neorg. Mater., 1982, v. 18, pp. 1569–1572. (in Ukr.) Babanly M. B., Tedenac J. C., Aliev Z. S., Balitsky D. M. Phase equilibriums and thermodynamic properties of the system Bi–Te–I. J. Alloys Compd., 2009, v. 481, pp. 349–353. https://doi.org/10.1016/j.jallcom.2009.02.139 Horak J., Rodot H. Preparation de cristaux du compose BiTeI. C. R. Acad. Sci. Paris Serie B, 1968, v. 267(6), pp. 363–366. Valitova N. R., Aleshin V. A., Popovkin B. A., Novoselova A. V. Investigation of the P-T-x phase diagram for the BiI3–Bi2Te3 system. Izv. Akad. Nauk, Neorg. Mater., 1976, v. 12(2), pp. 225–228. (in Russ.) Tomokiyo A., Okada T., Kawanos S. Phase diagram of system (Bi2Te3)–(BiI3) and crystal structure of BiTeI. Jpn. J. Appl. Phys. 1977, v. 16(6), pp. 291–298. https://doi.org/10.1143/jjap.16.291 Evdokimenko L. T., Tsypin M. I. The effect of halogens on the structure and properties of alloys based on Bi2Te3. Izv. Akad. Nauk, Neorg. Mater., 1971, v. 7(8), pp. 1317–1320. (in Russ.) Savilov S. V., Khrustalev V. N., Kuznetsov A. N., Popovkin B. A., Antipin Ju.M. New subvalent bismuth telluroiodides incorporating Bi2 layers: the crystal and electronic structure of Bi2TeI. Russ. Chem. Bull., 2005, v. 54(1), pp. 87–92. https://doi.org/10.1007/s11172-005-0221-8

11

Imamaliyeva,SamiraZ., DunyaM.Babanly, VladimirP.Zlomanov, MahammadB.Babanly, and DilgamB.Taghiyev. "Thermodynamic Properties of Terbium Tellurides." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no.4 (December15, 2020): 453–59. http://dx.doi.org/10.17308/kcmf.2020.22/3116.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The paper presents the results of a study of solid-phase equilibria in the Tb–Te system and the thermodynamic properties of terbium tellurides obtained by the methods of electromotive forces and X-ray diffraction analysis. Based on the experimental data, it was established that the TbTe, Tb2Te3, TbTe2 и TbTe3 compounds are formed in the system. For the investigations of the alloys from the two-phase regions TbTe3+Te, TbTe2+TbTe3, and Tb2Te3+TbTe2, the EMF of concentration cells relative to the TbTe electrode was measured. The EMF of concentration cells relative to the terbium electrode was measured for the TbTe+Tb2T3 region. The partial thermodynamic functions of TbTe and Tb in alloys were determined bycombining the EMF measurements of both types in the 300–450 K temperature range, based on which the standard thermodynamic functions of formation and standard entropies of the indicated terbium tellurides were calculated. References1. Jha A. R. Rare earth materials: properties andapplications. United States. CRC Press. 2014. 371 p.DOI: https://doi.org/10.1201/b170452. Balaram V. Rare earth elements: A review ofapplications, occurrence, exploration, analysis,recycling, and environmental impact. GeoscienceFrontiers. 2019;10(4): 1285–1290. DOI: https://doi.org/10.1016/j.gsf.2018.12.0053. Yarembash E. I., Eliseev A. A. Khal’kogenidyredkozemel’nykh elementov [Chalcogenides of rareearth elements). Moscow: Nauka Publ.; 1975. 258p.(In Russ.)4. Y-Sc., La-Lu. Gmelin Handbock of InorganicChemistry. In: Hartmut Bergmann (Ed.), Rare EarthElements, 8th Edition, Springer-Verlag HeidelbergGmbH. Berlin; 1987.5. Muthuselvam I. P., Nehru R., Babu K. R.,Saranya K., Kaul S. N., Chen S-M, Chen W-T, Liu Y.,Guo G-Y, Xiu F., Sankar R. Gd2Te3 an antiferromagneticsemimetal. J. Condens. Matter Phys. 2019;31(28):285802-5. DOI: https://doi.org/10.1088/1361-648X/ab15706. Huang H., Zhu J.-J. The electrochemicalapplications of rare earth-based nanomaterials.Analyst. 2019;144(23): 6789–6811. DOI: https://doi.org/10.1039/C9AN01562K7. Saint-Paul M., Monceau P. Survey of thethermodynamic properties of the charge density wavesystems. Adv. Cond. Matter Phys. 2019: 1–5 DOI:https://doi.org/10.1155/2019/21382648. Cheikh D., Hogan B. E., Vo T., Allmen P. V., Lee K.,Smiadak D. M., Zevalkink A., Dunn B. S., Fleurial J-P.,Bux S. L. Praseodymium telluride: A high temperature,high- ZT thermoelectric material. Joule. 2018; 2(4):698–709. DOI: https://doi.org/10.1016/j.joule.2018.01.0139. Patil S. J., Lokhande A. C., Lee D. W, Kim J. H.,Lokhande C. D. Chemical synthesis and supercapacitiveproperties of lanthanum telluride thin film. Journal ofColloid and Interface Science. 2017; 490: 147–153. DOI:https://doi.org/10.1016/j.jcis.2016.11.02010. Zhou X. Z., Zhng K. H. L, Xiog J., Park J-H,Dickerson J-H., He W. Size- and dimentionalitydependent optical, mahnetic and magneto-opticalproperties of binary europium-based nanocrystals:EuX (X=O, S, Se, Te). Nanotechnology. 2016;27(19):192001-5. DOI: https://doi.org/10.1088/0957-4484/27/19/19200111. Okamoto H. Desk handbook phase diagram forbinary alloys. ASM International. 2000. 900 p.12. Babanly M. B., Mashadiyeva L. F., Babanly D. M.,Imamaliyeva S. Z., Tagiyev D. B., Yusibov Y. A.. Someissues of complex studies of phase equilibria andthermodynamic properties in ternary chalcogenidesystems involving Emf measurements. Russian Journalof Inorganic Chemistry. 2019;64(13): 1649–1672. DOI:https://doi.org/10.1134/s003602361913003513. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,Babanly M. B. Physicochemical aspects of developmentof multicomponent chalcogenide phases having theTl5Te3 structure. A review. Russian Journal of InorganicChemistry2018;63(13): 1703–1724 DOI: https://doi.org/10.1134/s003602361813004114. Massalski T. B. Binary alloys phase diagrams,second edition. ASM International, Materials Park.Ohio; 1990. 3835 p. DOI: https://doi.org/10.1002/adma.1991003121515. Diagrammi sostoyaniya dvoynikh metallicheskikhsystem [Diagrams of Binary Metallic Systems]Handbook in 3 vols. Lyakishev N.P. (Ed.) Moscow:Mashinostroenie Publ.; 1996, 1997, 2001. (In Russ.)16. Eliseev A. A., Orlova I. G., Martynova L. F.,Pechennikov A. V., Chechernikov V. I. Paramagnetismof some terbium chalcogenides. Inorganic Materials.1987;23: 1833–1835.17. Mills K. C. Thermodynamic data for inorganicsulphides, selenides, and tellurides. London:Butterworth; 1974. 854 p.18. Vassiliev V. P., Lysenko V. A. Gaune-Escard M.Relationship of thermodynamic data with periodic law.Pure and Applied Chemistry. 2019;91(6): 879–884. DOI:https://doi.org/10.1515/pac-2018-071719. Vassiliev V. P., Lysenko V. A. New approach forthe study of thermodynamic properties of lanthanidecompounds. Electrochimica Acta. 2016;222: 1770–1775.DOI: https://doi.org/10.1016/j.electacta.2016.11.07520. Morachevsky A. G., Voronin G. F., Geyderich V. A.,Kutsenok I. B. Elektrokhimicheskie metody issledovaniyav t e r m o d i n a m i k e m e t a l l i c h e s k i k h s y s t e m .[Electrochemical methods of investigation inhermodynamics of metal systems]. Moscow:Akademkniga Publ.; 2003. 334 p. Available at: https://elibrary.ru/item.asp?id=19603291 (In Russ.)21. Babanly M. B., Yusibov Y. A. Elektrokhimicheskiemetody v termodinamike neorganicheskikh sistem[Electrochemical methods in thermodynamics ofinorganic systems]. Baku: BSU Publ.; 2011. 306 p.22. Imamaliyeva S. Z., Mehdiyeva I. F., Taghiyev D. B.et al. Thermodynamic investigations of the erbiumtellurides by EMF method. Physics and Chemistry ofSolid State. 2020;21(2): 312–318. DOI: https://doi.org/10.15330/pcss.21.2.312-31823. Hasanova G. S., Aghazade A. I., Yusibov Yu. A.,Babanly M. B. Thermodynamic investigation of theBi2Se3-Bi2Te3 system by the EMF method. Kondensirovannyesredy i mezhfaznye granitsy = CondensedMatter and Interphases. 2020;22(3): 310–319. DOI:https://doi.org/10.17308/kcmf.2020.22/296124. Imamaliyeva S. Z., Babanly D. M., Gasanly T. M.,et al.: Thermodynamic properties of Tl9GdTe6 andTlGdTe2. Russian Journal of Physical Chemistry A.2018;92(11): 2111–2116. DOI: https://doi.org/10.1134/s003602441811015825. Mansimova S. H., Orujlu E. N., Sultanova S. G.,Babanly M. B. Thermodynamic properties of Pb6Sb6Se17.Kondensirovannye sredy i mezhfaznye granitsy =Condensed Matter and Interphases. 2017;19(4): 536–541. https://doi.org/10.17308/kcmf.2017.19/23426. Imamaliyeva S. Z., Gasanly T. M., MahmudovaM. A. Thermodynamic properties of GdTe compound.Physics. 2017;22: 19–21. Available at: http://physics.gov.az/Dom/2017/AJP_Fizika_04_2017_en.pdf27. Imamaliyeva S. Z., Musayeva S. S., Babanly D. M.,Jafarov Y. I., Tagiyev D. B., Babanly M. B. Determinationof the thermodynamic functions of bismuthchalcoiodides by EMF method with morpholiniumformate as electrolyte. Thermochim. Acta. 2019; 679:178319–17825. DOI: https://doi.org/10.1016/j.tca.2019.17831928. Baza dannykh termicheskikh konstant veshchestv.Elektronnaya versiya pod. red. V. S. Yungmana. 2006[Database of thermal constants of substances.Electronic version V. S. Yungman (ed.). 2006]. Availableat: http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html

12

Stepanova,KristinaV., NataliaM.Yakovleva, AlexanderN.Kokatev, and Håkan Pettersson. "Структура и свойства нанопористых анодных оксидных пленок на алюминиде титана." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.1 (March6, 2019): 135–45. http://dx.doi.org/10.17308/kcmf.2019.21/724.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Работа посвящена обобщению результатов исследования анодирования алюминида титана (γ-TiAl) во фторсодержащих электролитах. Установлены оптимальные условия анодирования, приводящие к формированию самоорганизованных нанопористых анодных оксидных пленок (АОП) на поверхности образцов, сплава Ti-40 wt. % Al. Показано, что при оптимальных условиях образуются рентгеноаморфные оксидные пленки гетерогенного состава (Al2O3:TiO2 @ 1:1) с размерами пор в диапазоне от 40 до 80 nm. Полученные результаты свидетельствуют о перспективности применения анодного наноструктурирования порошков Ti-40 wt. % Al для получения фотокаталитически активных материалов с расширенным до видимого света спектральным диапазоном поглощения. ЛИТЕРАТУРА Wang Y., Ma X., Li H., Yin S., Sato T. Advanced Catalytic materials - Photocatalysis and Other Current Trends, 2016, vol. 12, pp. 337–357. https://doi.org/10.5772/61864 Hashimoto K., Irie H., Fujishima A. Japanese Journal of Applied Physics, 2005, vol. 44, no. 12, pp. 8269–8285. https://doi.org/10.1143/jjap.44.8269 Uddin Md.T., Engg M. Sc. Dr. Rer. Nat. Technical University of Darmstadt, 2014, 222 p. URL: https://d-nb.info/1061050335/04 (accessed 28.11.2018) Batzill M. Energy Environ. Sci., 2011, vol. 4, pp. 3275–3286. https://doi.org/10.1039/c1ee01577j Marschall R. Funct. Mater., 2014. vol. 24. pp. 2421–2440. https://doi.org/10.1002/adfm.201303214 Ghicov A., Schmuki P. Commun., 2009, pp. 2791–2808. https://doi.org/10.1039/b822726h Li F., Zhao Y., Hao Y., Wang X., Liu R., Zhao D., Chen D. Journal of Hazardous Materials, 2012, vol. 239–240. pp. 118–127. https://doi.org/10.1016/j.jhazmat.2012.08.016 Morris S. M., Horton J. A., Jaroniec M. Mesopor. Mater., 2010, vol. 128, pp. 180–186. https://doi.org/10.1016/j.micromeso.2009.08.018 Ahmed M. A., Abdel-Messih M. F. Journal of Alloys and Compounds, 2011, vol. 509, pp. 2154–2159. https://doi.org/10.1016/j.jallcom.2010.10.172 Pakmehr M., Nourmohammadi A., Ghashang M., Saffar-Teluri A. Journal of Particle Science and Technology, 2015, pp. 31–38. https://doi.org/22104/JPST.2015.76 Pei J., Ma W., Li R., Li Y., Du H. Journal of Chemistry, 2015, pp. 1–7. https://doi.org/10.1155/2015/806568 Il'in, A. A., Kolachev, B. A., Pol'kin, I. S. Titanovye splavy. sostav, struktura, svoistva [Titanium alloys. Composition, structure, properties]. Moscow, VILS-MATI Publ., 2009, 520 p. (in Russ.) Tsuchiya, H., Berger, S., Macak, J.M., Ghicov, A., Schmuki, P. Comm., 2007, vol. 9, pp. 2397–2402. https://doi.org/10.1016/j.elecom.2007.07.013 Berger, S., Tsuchiya, H., Schmuki, P. Mater., 2008, vol. 20, pp. 3245–3247. https://doi.org/10.1021/cm8004024 Stepanova K. V., Yakovleva N. M., Kokatev A. N., Pettersson Kh. zap. PetrGU. Seriya Estestvennye i tekhnicheskie nauki, 2015, vol. 147, no. 2, pp. 81–86. (in Russ.) Stepanova К. V., Yakovleva N. M., Kokatev А. N., Pettersson H. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, vol. 10, no. 5, pp. 933– https://doi.org/10.1134/S102745101605013X Stepanova K. V. Diss. kand. tekh. nauk. Petrozavodsk, 2016, 162 p. (in Russ.) Yakovleva N. M., Kokatev A. N., Chupakhina E. A., Stepanova K. V., Yakovlev A. N., Vasil'ev S. G., Shul'ga A. M. Condensed Matter and Interphases, 2016, vol. 18, no. 1, pp. 6− URL: http://www.kcmf.vsu.ru/resources/t_18_1_2016_001.pdf (in Russ.) Kokatev A. N. Diss. kand. tekh. nauk. Petrozavodsk, 2013, 170 p. Savchenko O. I., Yakovleva N. M., Yakovlev A. N., Kokatev A. N., Pettersson Kh. Condensed Matter and Interphases, 2012, vol. 14, no. 2, pp. 243–249. URL: http://www.kcmf.vsu.ru/resources/t_14_2_2012_018.pdf (in Russ.) Canulescu S., Rechendorff K., Borca C.N., Jones N.C., Bordo K., Schou J., Pleth Nielsen L., Hoffmann S. V., Ambat R. Applied Physics Letters, 2014, vol. 104, pp. 121910(1–4). https://doi.org/10.1063/1.4866901 Chen C., Liu J., Liu P., Yu B. Advances in Chemical Engineering and Science, 2011, vol. 1, pp. 9– https://doi.org/10.4236/aces.2011.11002 Rashed M. N., El-Amin A. A. International Journal of Physical Sciences, 2007, vol. 2 (3), pp. 073–081. URL: http://www.academicjournals.org/IJPS (accessed 28.11.2018) Ivanov V. M., Tsepkov M. G., Figurovskaya V. N. Vestnik Moskovskogo universiteta. Seriya 2: Khimiya [Moscow University Chemistry Bulletin], 2010, vol. 65, 6, pp. 370-373. https://link.springer.com/article/10.3103%2FS0027131410060076 Scuderi V., Impellizzeri G., Romano L., Scuderi M., Nicotra G., Bergum K., Irrera A., Svensson B.G., Privitera V. Nanoscale Research Letters, 2014, vol. 9, pp. 458–464. https://doi.org/10.1186/1556-276x-9-458 AbdElmoula M. Dr. Philosophy. Boston, 2011, 275 р. Lee K., Mazare A., Schmuki P. Rev., 2014, vol. 114, pp. 9385–9454. https://doi.org/10.1021/cr500061m Leyens C., Peters M. Titanium and Titanium Alloys. Fundamentals and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003, 532 p.

13

Pavlovic, Vojislav. "Le révolutionnaire professionnel Tito a Moscou 1935-1936." Balcanica, no.51 (2020): 121–41. http://dx.doi.org/10.2298/balc2051121p.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Josip Broz vint a Moscou en f?vrier 1935 pour parfaire son parcours de r?volutionnaire au sein du Komintern, le passage oblig? pour tous les cadres du Parti communiste yougoslave. Or, son s?jour a Moscou n?avait rien d?habituel, car il y devint le confident du tout-puissant D?partement des cadres de l?Internationale communiste dans le Parti yougoslave. Gr?ce a l?appui du D?partement des cadres, qui avait la charge de contr?ler les cadres des partis freres au sein du Komintern, Broz devint le num?ro deux du Parti yougoslave et repartit de Moscou en octobre 1936 pour diriger l?action du Parti en Yougoslavie. Cette nouvelle fonction lui permit d?effectuer sa deuxieme mission a savoir de contr?ler l?action des cadres yougoslaves.

14

Шмігер, Тарас. "Погляди Роналда Ленекера на когнітивну семантику як модель перекладознавчого аналізу ("Слово некоего калугера о чьтьи книг» в сучасних українсько- та англомовних перекладах." East European Journal of Psycholinguistics 3, no.1 (June30, 2016): 102–17. http://dx.doi.org/10.29038/eejpl.2016.3.1.shm.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Мета цього дослідження – проаналізувати можливість використовувати погляди Р. В. Ленекера на когнітивну семантику як семантико-текстологічну модель перекладознавчого аналізу. Матеріалом для розгляду обрано твір «Слово некоего калугера о чьтьи книг» із «Ізборника Святослава» 1076 р. та його три переклади: два переклади сучасною українською мовою (повний – В. Яременка, частковий – Є. Карпіловської й Л. Тарновецької) та один переклад англійською мовою (В. Федера). Теорія когнітивної семантики Р. Ленекера орієнтується здебільшого на граматичні проблеми й опис мови через параметри простору. Параметрам опису образности, які пропонує когнітивна семантика, бракує чіткости, які мають аналітичні методи структуралізму. Однак, вони виконують головну аналітичну функцію: вони дозволяють усвідомити наявні в перекладі порушення й відхилення від першотвору та намагатися усвідомити їхню природу й межі. Література References Бычков В. 2000 лет христианской культуры sub specie aesthetica : в 2 т. Т. 2 :Славянский мир. Древняя Русь. Россия. Москва; Санкт-Петербург : Университетскаякнига, 1999.Bychkov, V. (1999). 2000 let khrystyanskoi kultury sub specie aesthetica. T. 2: Slavianskyimyr. Drevniaia Rus. Rossyia. [2000 years of Christian culture sub specie aesthetica. Vol. Slavonic world. Old Rus. Russia]. Moscow; S.-Petersburg: Unyversytetskaya Kniga. Божилов И. Цар Симеон Велики (893–927): Златният век на СредновековнаБългария. София: На отечествения фронт, 1983.Bozhylov, Y. (1983).Tsar Symeon Velyky (893–927): Zlatnyiat vek na SrednovekovnaBalgariya. [Czar Simeon the Great (893–927): the golden epoch of the MedievalBulgaria]. Sofia: Na Otechestvenyia Front. Великий тлумачний словник сучасної української мови / уклад. і гол. ред. В. Т. Бусел.К.; Ірпінь: ВТФ «Перун», 2005.Velykyi tlumachnyi slovnyk suchasnoi ukrainskoi movy. [A great comprehensivedictionary of the contemporary Ukrainian language]. (2005). Busel, V. T. (comp.). Kyiv;Irpin: Perun. ЕСУМ: Етимологічний словник української мови. – К.: Наукова думка, 1982.Etymolohichnyi slovnyk ukrayinskoyi movy. [An etymological dictionary of the Ukrainianlanguage]. (1982). Kyiv: Naukova Doumka. Изборник 1076 года. М.: Наука, 1965.Izbornik 1076 goda. [A synaxarion of 1076]. (1965). Moscow: Nauka. Золоте слово / упорядн. : В. Яременко, О. Сліпушко. Київ: Аконіт, 2002.Zolote slovo. [Golden word] (2002). Yaremenko, V., Slipushko, O. (comp.). Kyiv: Akonit. Каждан А. П. Книга и писатель в Византии. Москва: Наука, 1973.Kazhdan, A. P. (1973). Kniga i pisatel v Vizantii. [Books and writers in Byzantium].Moscow: Nauka. Київський псалтир : Давида пророка и царя пhснь. Київ, 1397. Зберігається:Российская Национальная библиотека (Санкт-Петербург). Шифр: ОЛДП F 6.Kyivskyi psaltyr: Davyda proroka i tsaria pisn. [The psalm book of Kyiv] (1397). Kyiv.Manuscript. Stored at: Russian National Library (Saint-Petersburg). Code: OLDP F 6. Книга правил святих апостолів, Вселенських і Помісних Соборів і святих Отців.К.: Видання Київської Патріархії Української Православної Церкви КиївськогоПатріархату, 2008.Knyha pravyl sviatykh apostoliv, Vselenskykh i Pomisnykh Soboriv i sviatykh Ottsiv. [Abook of rules of Saint Apostles, Ecumenical and Local Councils and Holy Fathers].(2008). Kyiv: Vydannia Kyivskoyi Patriarkhiyi Ukrayinskoyi Pravoslavnoyi TserkvyKyivskoho Patriarkhatu. Малоруско-нїмецкий словар / уложили Є. Желеховский, С. Недїльский. Львів : Т-воім. Шевченка, 1886.Malorusko-nimetskyi slovar. [A Ukrainian-German dictionary]. (1886). Zhelekhovskyi,Ye., Nedilskyi, S. (comp.). Lviv: Tovarystvo im. Shevchenka. Настольная книга священнослужителя. Т. 4. Москва, 1983.Nastolnaia kniga sviashchennosluzhytelia. T. 4. [A priest’s handbook. Vol. 4]. (1983).Moscow. Пиккио Р.Slavia Orthodoxa: Литература и язык. Москва : Знак, 2003.Piccio, R. (2003). Slavia Orthodoxa: Literatura i yazyk. [Slavia Orthodoxa: Literature andlanguage]. Moskcow: Znak. Православная энциклопедия. Т. 16. Москва : Церк.-науч. центр «Православнаяэнциклопедия», 2007.Pravoslavnaia Entsyklopediia. T. 16. [Orthodox Encyclopedia. Vol. 16]. (2007). Moscow:Church and Scientific Center “Pravoslavnaia Entsyklopediia”. Сивокінь Г.М. Одвічний діалог: (Українська література і її читач від давнини досьогодні). Київ : Дніпро, 1984.Syvokin, H. M. (1984). Odvichnyi dialoh: (Ukrainska literatura i yiyi chytach vid davnynydo sohodni). [The eternal dialogue: Ukrainian literature and its readership from the oldtimes till nowadays]. Kyiv: Dnipro. Словарь древнерусского языка (XI–XIV вв.) / гл. ред. Р. И. Аванесов. Москва: Рус. яз., 1988.Slovar drevnerusskoho yazyka (XI–XIV vv.). [A dictionary of the Russian language of the11th–14th centuries]. (1988). Avanesov, R. Y. (ed.-in-chief). Moscow: Russkiy Yazyk. Словарь русского языка ХІ–XVII вв. Москва: Наука, 1975.Slovar Russkogo Yazyka ХІ–XVII vv. [A dictionary of the Russian language of the 11th-17th centuries]. (1975). Moscow: Nauka. Slovar Staroslavianskogo Yazyka. [A dictionary of the Old Slavonic language]. (2006).Saint-Petersburg. Словарь української мови / упор. з дод. влас. матеріалу Б. Грінченко. Київ, 1907–1909.Slovar Ukrayinskoyi Movy. [A Dictionary of the Ukrainian language]. (1907–1909).Hrinchenko, B. (comp.) Kyiv. Срезневскій И.И. Матеріалы для словаря древне-русскаго языка по письменнымъпамятникамъ. Санктпетербургъ, 1893–1912. Sreznevskiy, I. I. (1893–1912). Materialy Dlia Slovaria Drevne-russkago Yazyka poPismennymPpamiatnikam. [Materials for the Dictionary of the Old Rus Language asBased on Written Monuments ].Saint-Petersburg. Словник української мови. Київ : Наукова думка, 1970–1980.Slovnyk Ukrayinskoyi Movy. [A Dictionary of the Ukrainian language]. (1970–1980).Kyiv: Naukova Doumka. Словник староукраїнської мови XIV–XV ст. Київ: Наук. думка, 1977–1978.Slovnyk Staroukrayinskoyi Movy XIV–XV st. [A Dictionary of the Ukrainian Language ofthe 14th–15th centuries]. (1977–1978). Kyiv: Naukova doumka,. Словник української мови XVI – першої половини XVII ст. Львів, 1994.Slovnyk Ukrayinskoyi Movy XVI – Pershoyi Polovyny XVII st. [A Dictionary of theUkrainian Language of the 16th to the first half of the 17th centuries]. (1994). Lviv. Українська література ХІ–ХVІІІ століть / упоряд. Є. А. Карпіловська,Л. О. Тарновецька. Чернівці : Прут, 1997.Ukrayinska Literatura ХІ–ХVІІІ stolit. [Ukrainian Literature of the 11th–18th Centuries].(1997).Ye. A. Karpilovska, L. O. Tarnovetska (Eds.). Chernivtsi: Prut. Франко І. Із лектури наших предків ХІ в. // Франко І. Додаткові томи до Зібраннятворів у п’ятдесяти томах / І. Франко. Київ : Наук. думка, 2010. Т. 54. С. 911–922.Franko, I. (2010). Iz lektury nashykh predkiv ХІ v. [From the Readings of our Ancestors inthe 11th century]. In: Dodatkovi Tomy do Zibrannia Tvoriv u Pyatdesiaty Tomakh . Vol. 54(pp. 911–922). Kyiv: Naukova doumka. Цейтлин Р.М. Лексика старославянского языка: Опыт анализа мотивированныхслов по данным древнеболгарских рукописей Х—ХІ вв. Москва: Наука, 1977.Tseitlin, R. M. (1977). Leksika Staroslavianskogo Yazyka: Opyt Analiza MotivirovannykhSlov po Dannym Drevnebolgarskikh Rukopisei Х—ХІ vv. [Lexis of the Old SlavonicLanguage: A Case Study of Derived Vocabulary in the Old Bulgarian Manuscripts of the10th–11th centuries]. Moscow: Nauka. The Compact Edition of the Oxford English Dictionary: Complete Text ReproducedMicrographically. (1971). Oxford: Oxford University Press. The Compact Edition of the Oxford English Dictionary: Complete Text ReproducedMicrographically. (1987). Burchfield, R. W. (ed.). Oxford u.a.: Clarendon Press. The Edificatory Prose of Kievan Rus' (1994). Veder, W. R. (trans.). Cambridge, MA:Harvard University Press. Henry, M. (1972). Commentary on the Whole Bible: Complete and Unabridged in 2Volumes. Wilmington, Delaware: Sovereign Grace. Langacker, R. (1988). A View of Linguistic Semantics. In: Topics in CognitiveLinguistics (pp. 49–89). Amsterdam: Benjamins. Langacker, R. W. (1987). Foundations of Cognitive Grammar. Stanford CA: StanfordUniversity Press. New Catholic Encyclopedia. (2002–2003). Detroit: Thomson/Gale. Sophocles, E. A. (1914). Greek Lexicon of the Roman and Byzantine periods: (fromB. C. 146 to A.D. 1100). Cambridge : Harvard University Press ; London: HumphreyMilford. Stockwell, P. (2002). Cognitive Poetics: An Introduction. London: Routledge. 17. Словарь старославянского языка. СПб, 2006.

15

Pastryk, Tetyana, Olena Kotys, Nataliia Dyachuk, and Volodymyr Milinchuk. "Conscious Control in Speech Pathology and Speech Rehabilitation Following Stroke." East European Journal of Psycholinguistics 6, no.2 (December27, 2019): 89–97. http://dx.doi.org/10.29038/eejpl.2019.6.2.pas.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The article presents results of the research conducted in speech rehabilitation period of patients after stroke. The study aims to identify conscious control in speech rehabilitation period of the patients who were diagnosed to have Broca’s aphasia. A sample of 22 patients with Broca’s aphasia, or efferent motor aphasia (Luria, 2004) in the left hemisphere, who stayed at the Volyn Regional Clinical Hospital (Lutsk, Ukraine) during rehabilitation period, was approached through purposeful sampling method for this research. The non-laboratory measure of speech assessment was administered along with demographic data. Results showed that conscious control that usually remains in this group of people plays a crucial role in psychological intervention. The article also discusses the main neuropsycholinguistic principles that help to utilize the potential of conscious control in the process of speech rehabilitation of the patients after stroke. References Лурия А.Р. Лекции по общей психологии. СПб.: Питер, 2004. Мілінчук В. І., Засєкіна Л. В. Нейропсихолінгвістичний підхід до дослідження мовлення пацієнтів після інсульту // Актуальні проблеми практичної психології. Ч. І. 2010. С. 143-146. Мілінчук В. І. Вплив емоційних станів на мовленнєву діяльність пацієнтів після інсульту // Психологічні перспективи. Вип. 15. 2010. С. 207-218. Хомская Е. Д. Нейропсихология. СПб.: Питер, 2005. Шохор-Троцкая М. К. Речь и афазия. М.: Изд-во ЭКСМО-Пресс, 2001. Brown C., Hagoort P. (2003). The Neurocognition of Language. Oxford: Oxford University Press. Hauk, O, Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in motor and premotor cortex. Neuron, 41, 301-307. Kohno, M. (2007). Two neural clocks: humans’ innate temporal systems for spoken language processing. In: J. Arabski, Ed. Challenging Tasks for Psycholinguistics in the New Century. (pp. 283-292). Katowice: University of Silesia. Marshall, J. (2000a). Speech and language problems following stroke In: R. Fawcus, Ed. Stroke Rehabilitation. (pp. 113-129). Oxford: Blackwell. Marshall J. (2000b). The treatment of speech and language disorders following stroke. In: R. Fawcus, Ed. Stroke Rehabilitation. (pp. 130-146). Oxford: Blackwell. Northoff, G. (2003). Philosophy of the Brain. Boston: Harvard University. Pulvermüller, F. (2002). The Neuroscience of Language. On Brain Circuits of Words and Serial Order. Cambridge: Cambridge University Press. Pulvermüller, F., Berthier, M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22(6), 563–599. References (translated and transliterated) Luria, R. (2004). Lektsii po Obschey Psikhologii [Lectures on General Psychology]. S.-Petersburg: Piter. Milinchuk, V., Zasiekina, L. (2010). Neuropsycholinhvistycgbyi pidhid do doslidzhennia movlennia patsientiv pislia insultu [Neuropsycholinguistic approach to the study of patients after stroke]. Aktualni Problemy Praktychnoi Psykholohii, 1, 143-146. Milinchuk, V. (2010). Vplyv emotsiinykh staniv na movlennevu diyalnist patsientiv pislia insultu. Psyholohichni Perspectyvy – Psychological Prospects, 15, 207-218. Khomskaya, Y. (2005). Neuropsihologiia [Neuropsychology]. S.-Petersburg: Piter. Shohor-Trotskaya, M. (2001). Rech I Afaziya [Speech and Aphasia]. Moscow: Eksmo-Press. Brown C., Hagoort P. (2003). The Neurocognition of Language. Oxford: Oxford University Press. Hauk, O, Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in motor and premotor cortex. Neuron, 41, 301-307. Kohno, M. (2007). Two neural clocks: humans’ innate temporal systems for spoken language processing. In: J. Arabski, Ed. Challenging Tasks for Psycholinguistics in the New Century. (pp. 283-292). Katowice: University of Silesia. Marshall, J. (2000a). Speech and language problems following stroke In: R. Fawcus, Ed. Stroke Rehabilitation. (pp. 113-129). Oxford: Blackwell. Marshall J. (2000b). The treatment of speech and language disorders following stroke. In: R. Fawcus, Ed. Stroke Rehabilitation. (pp. 130-146). Oxford: Blackwell. Northoff, G. (2003). Philosophy of the Brain. Boston: Harvard University. Pulvermüller, F. (2002). The Neuroscience of Language. On Brain Circuits of Words and Serial Order. Cambridge: Cambridge University Press. Pulvermüller, F., Berthier, M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22(6), 563–599.

16

Гаврилів, Оксана. "Вербальна агресія: між насильством і безсиллям." East European Journal of Psycholinguistics 4, no.2 (December28, 2017): 34–46. http://dx.doi.org/10.29038/eejpl.2017.4.2.hav.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

У статті здійснено диференціацію понять «вербальна агресія» – «вербальне насильство», які дотепер розглядалися синонімічно не лише філософами мови, а й мовознавцями. Виділено спектр функцій вербальної агресії від комунікативної інтенції «образа, приниження» до жартівливого, лаудативного вживання (фіктивна вербальна агресія). Висунуто гіпотезу про комплексність комунікативних інтенцій, які лежать в основі вербальноагресивних актів і вирішальну роль катартичної функції. Результати дослідження підтвердили нашу гіпотезу про комплексний характер вербальної агресії, який виявляється в поліфункціональності і домінуванні катартичної функції. Емпіричну основу творять усні і письмові опитування мешканців м. Відень (Австрія). Загалом опитано 386 осіб різного віку, соціального стану і в однаковій кількості представників обох статей. Література References Aman, R. (1972). Psychologisch-sprachliche Einleitung in das Schimpfen. In: Bayrisch-Österreichisches Schimpfwörterbuch, (S. 153-188). R. Aman (Hg.). München: Süddeutscher Verlag. Bach, G. R., Goldberg, H. (1981). Keine Angst vor Aggression. Die Kunst der Selbstbehauptung. FaM: Fischer. Biffar, R. (1994). Verbale Aggressionsstrategien. Analyse, Systematik, Anwendung. Aachen: Shaker. Burgen, S. (1998). Bloody hell, verdammt noch mal! Eine europäische Schimpfkunde. München: Dt. Taschenbuch. Butler, J. (2006). Haß spricht. Zur Politik des Performativen. FaM: Suhrkamp. Cherubim, D. (1991). Sprache und Aggression. Krieg im Alltag – Alltag und Krieg. Loccumer Protokolle, 58, 11-35. Devkin, V. D. (1996). Der russische Tabuwortschatz. Leipzig: Langenscheidt Enzyklopädie. Ehalt, Ch. (2015). Vorwort. In: Schmäh als ästhetische Strategie der Wiener Avantgarde, (S. 7-10). Suchy, I., Krejci, H. (Hg.).Weitra: Bibliothek der Provinz. Ermen, I. (1996). Fluch – Abwehr – Beschimpfung. Pragmatik der formelhaften Aggression im Serbokroatischen. FaM u.a.: Peter Lang. Faust, M. (1970). Metaphorische Schimpfwörter. Indogermanische Forschungen, 74, 57-47. Fiehler, R. (1990). Kommunikation und Emotion. Berlin u.a.: Walter de Gruyter. Freud, S. (1994). Der Humor. In: S. Freud Studienausgabe Bd. IV, (S. 275-282). A. Mitscherlich, J. Strachey, A. Richards (Hg.). FaM: Fischer. Gauger, H-M. (2012). Das Feuchte und das Schmutzige. Kleine Linguistik der vulgären Sprache. München: Beck. Graber, H. G. (1931). Zur Psychoanalyse des Fluchens. Psychoanalytische Bewegung, 3, 57-68. Havryliv, O. (2009). Verbale Aggression. Formen und Funktionen am Beispiel des Wienerischen. FaM, Wien u.a.: Peter Lang. Herrmann, S. K., Krämer, S., Kuch, H. (Hg.). (2007). Verletzende Worte. Die Grammatik sprachlicher Missachtung. Bielefeld: Transcript. Hess-Lüttich, E.W.B. (2008). HimmelHerrgottSakrament! Gopfridstutz! und Sacklzement! Vom Fluchen und Schimpfen – Malediktologische Beobachtungen. Kodikas/Code. An International Journal of Semiotics, 31(3-4), 327-337. Holzinger, H. (1984). Beschimpfungen im heutigen Französisch. Pragmatische, syntaktische und semantische Aspekte. Ph.D. Dissertation: Universität Salzburg. Kiener, F. (1983). Das Wort als Waffe. Zur Psychologie der verbalen Aggression. Göttingen: Vandenhoek & Ruprecht. Kotthoff, H., Jashari, S., Klingenberg, D. (2013). Komik (in) der Migrationsgesellschaft. Konstanz und München: UVK Verlagsgesellschaft. Krämer, S. (Hg.) (2010). Gewalt in der Sprache. Rhetoriken verletzenden Sprechens. München: Wilhelm Fink. Liebsch, B. (2007). Subtile Gewalt. Weilerswirt: Velbrück Wiss. Lötscher, A. (1980). Lappi, Lööli, blööde Siech! Schimpfen und Fluchen im Schweizerdeutschen. Frauenfeld: Huber. Mokienko, V., Walter, H. (1999). Lexikographische Probleme eines mehrsprachigen Schimpfwörterbuchs. Anzeiger für slawische Philologie, XXVI, 199-210. Opelt, I. (1965). Die lateinischen Schimpfwörter und verwandte sprachliche Erscheinungen. Heidelberg: Winter. Rehbock, H. (1987). Konfliktaustragung in Wort und Spiel. Analyse eines Streitgesprächs von Grundschulkindern. In: Konflikte in Gesprächen, (S. 176- 238). G. Schank, J. Schwitalla (Hg.). Tübingen: Gunter Narr. Schumann, H. B. (1990). Sprecherabsicht: Beschimpfung. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 43, 259-281. Schwarz-Friesel, M. (2013). Sprache und Emotion. Tübingen und Basel: Francke. Searle, J. R. (1971). Sprechakte. Ein sprachphilosophischer Essay. FaM.: Suhrkamp. Sornig, K. (1975). Beschimpfungen. Grazer Linguistische Studien, 1, 150- 170. Українська мова без табу. Словник нецензурої лексики та її відповідників. К: Критика, 2008. Wierzbicka, A. (1973). Problems of expression: Their place in the semantic theory. In: Recherches sur les sestemes Signifiants. Symposium de Varsovie 1968, (S. 145-164). The Hague: Mouton. Жельвис В. И. Поле брани: cквернословие как социальная проблема в языках и культурах мира. М: Ладомир, 1997. References (translated and transliterated) Aman, R. (1972). Psychologisch-sprachliche Einleitung in das Schimpfen. In: Bayrisch-Österreichisches Schimpfwörterbuch, (S. 153-188). R. Aman (Hg.). München: Süddeutscher Verlag. Bach, G. R., Goldberg, H. (1981). Keine Angst vor Aggression. Die Kunst der Selbstbehauptung. FaM: Fischer. Biffar, R. (1994). Verbale Aggressionsstrategien. Analyse, Systematik, Anwendung. Aachen: Shaker. Burgen, S. (1998). Bloody hell, verdammt noch mal! Eine europäische Schimpfkunde. München: Dt. Taschenbuch. Butler, J. (2006). Haß spricht. Zur Politik des Performativen. FaM: Suhrkamp. Cherubim, D. (1991). Sprache und Aggression. Krieg im Alltag – Alltag und Krieg. Loccumer Protokolle, 58, 11-35. Devkin, V. D. (1996). Der russische Tabuwortschatz. Leipzig: Langenscheidt Enzyklopädie. Ehalt, Ch. (2015). Vorwort. In: Schmäh als ästhetische Strategie der Wiener Avantgarde, (S. 7-10). Suchy, I., Krejci, H. (Hg.).Weitra: Bibliothek der Provinz. Ermen, I. (1996). Fluch – Abwehr – Beschimpfung. Pragmatik der formelhaften Aggression im Serbokroatischen. FaM u.a.: Peter Lang. Faust, M. (1970). Metaphorische Schimpfwörter. Indogermanische Forschungen, 74, 57-47. Fiehler, R. (1990). Kommunikation und Emotion. Berlin u.a.: Walter de Gruyter. Freud, S. (1994). Der Humor. In: S. Freud Studienausgabe Bd. IV, (S. 275-282). A. Mitscherlich, J. Strachey, A. Richards (Hg.). FaM: Fischer. Gauger, H-M. (2012). Das Feuchte und das Schmutzige. Kleine Linguistik der vulgären Sprache. München: Beck. Graber, H. G. (1931). Zur Psychoanalyse des Fluchens. Psychoanalytische Bewegung, 3, 57-68. Havryliv, O. (2009). Verbale Aggression. Formen und Funktionen am Beispiel des Wienerischen. FaM, Wien u.a.: Peter Lang. Herrmann, S. K., Krämer, S., Kuch, H. (Hg.). (2007). Verletzende Worte. Die Grammatik sprachlicher Missachtung. Bielefeld: Transcript. Hess-Lüttich, E.W.B. (2008). HimmelHerrgottSakrament! Gopfridstutz! und Sacklzement! Vom Fluchen und Schimpfen – Malediktologische Beobachtungen. Kodikas/Code. An International Journal of Semiotics, 31(3-4), 327-337. Holzinger, H. (1984). Beschimpfungen im heutigen Französisch. Pragmatische, syntaktische und semantische Aspekte. Ph.D. Dissertation: Universität Salzburg. Kiener, F. (1983). Das Wort als Waffe. Zur Psychologie der verbalen Aggression. Göttingen: Vandenhoek & Ruprecht. Kotthoff, H., Jashari, S., Klingenberg, D. (2013). Komik (in) der Migrationsgesellschaft. Konstanz und München: UVK Verlagsgesellschaft. Krämer, S. (Hg.) (2010). Gewalt in der Sprache. Rhetoriken verletzenden Sprechens. München: Wilhelm Fink. Liebsch, B. (2007). Subtile Gewalt. Weilerswirt: Velbrück Wiss. Lötscher, A. (1980). Lappi, Lööli, blööde Siech! Schimpfen und Fluchen im Schweizerdeutschen. Frauenfeld: Huber. Mokienko, V., Walter, H. (1999). Lexikographische Probleme eines mehrsprachigen Schimpfwörterbuchs. Anzeiger für slawische Philologie, XXVI, 199-210. Opelt, I. (1965). Die lateinischen Schimpfwörter und verwandte sprachliche Erscheinungen. Heidelberg: Winter. Rehbock, H. (1987). Konfliktaustragung in Wort und Spiel. Analyse eines Streitgesprächs von Grundschulkindern. In: Konflikte in Gesprächen, (S. 176- 238). G. Schank, J. Schwitalla (Hg.). Tübingen: Gunter Narr. Schumann, H. B. (1990). Sprecherabsicht: Beschimpfung. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 43, 259-281. Schwarz-Friesel, M. (2013). Sprache und Emotion. Tübingen und Basel: Francke. Searle, J. R. (1971). Sprechakte. Ein sprachphilosophischer Essay. FaM.: Suhrkamp. Sornig, K. (1975). Beschimpfungen. Grazer Linguistische Studien, 1, 150- 170. Stavyc´ka, L. (2008). Ukraїns´ka mova bez tabu. Slovnyk necensurnoї leksyky ta її vidpovidnykiv [Ukrainian language without taboo. Dictionary of abusive vocabulary and its correspondence]. Kyiv: Klassyka. Wierzbicka, A. (1973). Problems of expression: Their place in the semantic theory. In: Recherches sur les sestemes Signifiants. Symposium de Varsovie 1968, (S. 145-164). The Hague: Mouton. Zhelvis, V.I. (1997). Pole brani: skvernosloviye kak socialnaya problema v yasykax i kulturax mira [Field of Battle: Foul Language as a Social Problem in the Languages and Cultures of the World]. Moscow: Ladomir. Джерела Галкіна Є. У Кремлі не збираються доходити до Києва і Львова. Високий замок, 19. 02. – 25.02.15,6. Ерофеев В. Русский апокалипсис. Retrieved from: Broyallib.ru/book/erofeev_viktor/ russkiy_apokalipsis html (12.02.2014). Hessel, S. Empört euch! Retrieved from: http://jerome-segal.de/empoert_euch.pdf (27.02.2015). Лагерлеф С. Чудесна мандрівка Нільса Гольгерсона з дикими гусьми / C. Лагерлеф. К: Веселка, 1991. Лі Г. Вбити пересмішника / Г. Лі. К: Компанія Осма, 2015. Майже половина українців вживає ненормативну лексику. Retrieved from http://life.pravda.com.ua/society/2013/09/25/139569/ (29.05.2013). Путін хуйло. Retrieved from: https://uk.wikipedia.org/wiki/Путін_— _хуйло! (15.06.2016). Sources (translated and transliterated) Galkina, J. U Kremli ne zbyrayutsia doхodyty do Kyiva i Lvova [The Kreml is not going to go to Kyiv or Lviv]. Vysokyj zamok, 19. 02. – 25.02.15,6. Yerofeyev, V. Russkij apokalipsis [The Russian Apocalypse]. Retrieved from: Broyallib.ru/book/ erofeev_viktor/russkiy_apokalipsis html (12.02.2014). Lagerlöf, S. (1991). Chudesna mandrivka Nilsa Holhersona z dykymy hus´my [The Wonderful Adventures of Nils]. Kyiv: Veselka. Lee, H. (2015). Vbyty Peresmishnyka [To Kill a Mockingbird]. Kyiv: Kompania Osma. Mayzhe polovyna ukraїnciv vzhyvaye nenormatyvnu leksyku [Almost half of Ukrainians use abusive vocabulary]. Retrieved from http://life.pravda.com.ua/society/2013/09/25/139569/ (29.05.2013). Putin Xuylo [Putin is Asshole]. Retrieved from: https://uk.wikipedia.org/wiki/Путін_– _хуйло! (15.06.2016).

17

Valeev,R.M., O.D.Vasilyuk, R.Z.Valeeva, S.A.Kirillina, D.E.Martynov, M.S.Mejer, and D.R.Hajrutdinov. "LETTERS FROM V. A. GORDLEVSKY TO A. Y. KRYMSKY FROM THE COLLECTIONS OF THE INSTITUTE OF MANUSCRIPTS OF V.I. VERNADSKY SCIENTIFIC LIBRARY OF UKRAINE (1906 - 1909)." Nauka v sovremennom mire, no.3(48) (April20, 2020): 10–16. http://dx.doi.org/10.31618/2524-0935-2020-48-3-2.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Academicians A. Y. Krymsky and V. A. Gordlevsky are important figures in the history of Russian classical orientalism and Arab-Muslim studies, in particular the Moscow and Kiev centers of Oriental studies, especially in the field of academic turkology, Ottoman, Arab and Iranian studies, as well as the public life of the Russian Empire and the USSR. They are widely known in the history of humanities in modern Russian Federation and Ukraine. Currently, we are conducting the search, study, systematization and publication of the correspondence by outstanding arabist, semitologist, turkologist, Iranian and Slavic studies scholar A. Y. Krymsky with leading Russian orientalists V. R. Rosen, V. V. Bartold, P. K. Kokovtsov, F. E. Korsch, V. A. Zhukovsky, S. F. Oldenburg, I. Y.Krachkovsky, Н.А. Mednikov, V. A. Gordlevsky, B. V. Miller, V. F. Minorsky and other scholars during the period of 1890s to 1930s. The article is devoted to a brief overview of the activities of A. Y. Krymsky and V. A. Gordlevsky at the Lazarev Institute of Oriental languages (1898 –1918) and their extant personal correspondence. The main attention is paid to the publication of two extant letters, both previously unknown in the history of Russian Turkology and Orientalism, written by V. A. Gordlevsky from Konya (Turkey) to A. Y. Krymsky, from the collections of the Institute of Manuscripts of V.I. Vernadsky Scientific Library of Ukraine (Kiev). This library contains two letters by V. A. Gordlevsky to Professor A. Y. Krymsky from a pre-Revolution period (dated November 7, 1906 and April 20, 1909), both published in this paper

18

Aliev,AmilR., IsaR.Akhmedov, MuradG.Kakagasanov, and ZakirA.Aliev. "ПРЕДПЕРЕХОДНЫЕ ЯВЛЕНИЯ В ОБЛАСТИ СТРУКТУРНОГО ФАЗОВОГО ПЕРЕХОДА В СУЛЬФАТЕ КАЛИЯ." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.3 (September26, 2019): 350–57. http://dx.doi.org/10.17308/kcmf.2019.21/1148.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Методами спектроскопии комбинационного рассеяния света исследованы структурно-динамические свойства и процессы молекулярной релаксации в кристаллическом сульфате калия K2SO4 в интервале температур от 293 до 900 К. Проанализированы температурные зависимости положения максимума v (частоты), ширины w и интенсивности I спектральной полосы, отвечающей полносимметричному колебанию v1(A) сульфат-иона SO4 2–, в спектральном интервале от 963 до 976 см–1. С ростом температуры частота колебания уменьшается. Примерно при 650 K имеют место определённые особенности температурной зависимости v(T). При дальнейшем увеличении температуры частота продолжает уменьшаться. В точке структурного фазового перехода первого рода (Ts = 854 K)уменьшение частоты приостанавливается. С ростом температуры ширина возрастает, а интенсивность уменьшается. Примерно при 650 K имеют место определённые особенности температурных зависимостей w(T) и I(T). Уменьшение интенсивности приостанавливается, и в интервале температур 650–850 K интенсивность остаётся почти постоянной. При структурном фазовом переходе первого рода (Ts = 854 K) интенсивность уменьшается. Рост ширины при температуре T ≈ 650 K приостанавливается, а затем снова ширина начинает увеличиваться. Ближе к структурному фазовому переходу первого рода (Ts = 854 K) рост ширины замедляется и в точке структурного фазового перехода первого рода (Ts = 854 K) имеет место уменьшение ширины. Установлено, что в кристаллическом сульфате калия K2SO4 структурный фазовый переход первого рода носит растянутый характер. При температуре фазового перехода (Ts = 854 К) ширина резко возрастает, а частота резко уменьшается, уменьшаясь и при дальнейшем увеличении температуры. Обнаружено существование предпереходной области в исследованном кристаллическом сульфате калия K2SO4. Эта предпереходная область имеет место в интервале температур от 650 К до Ts = 854 К. REFERENCES Ivanova E. S., Petrzhik E. A., Gainutdinov R. V., Lashkova A. K., Volk T. R. Fatigue processes in triglycine sulfate and the effect of a magnetic fi eld on them. Phys. Solid State, 2017, vol. 59(3), ph. 569–574. https://doi.org/10.1134/S1063783417030155 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in solid binary systems. Phys. Solid State, 2017, vo l . 59(4), pp. 752–757. https://doi.org/10.1134/10.1134/S1063783417040035 Bondarev V. S., Mikhaleva E. A., Flerov I. N., Gorev M. V. Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions. Phys. Solid State, 2017, vol. 59(6), pp. 1118–1126. https://doi.org/10.1134/S1063783417060051 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states insolid binary systems “carbonate – sulfate”. Phys. Solid State, 2018, vol. 60(2), pp. 347–351. https://doi.org/10.1134/S1063783418020038 Nguyen Hoai Thu’o’ng, Sidorkin A. S., Milovidova S. D. Dispersion of dielectric permittivity in a nanocrystallinecellulose–triglycine sulfate composite at low and ultralow frequencies. Phys. Solid State, 2018, vo l . 60(3), pp. 559–565. https://doi.org/10.1134/S1063783418030320 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Vibrational relaxation in LiNO3 – LiClO4, Na2CO3 – Na2SO4, and KNO3 – KNO2 solid binary systems. Rus. J. Phys. Chem. B, 2018, vol. 12(3), pp. 357–362. https://doi.org/10.1134/S1990793118030211 Mikhaleva E. A., Flerov I. N., Kartashev A. V., Gorev M. V., Molokeev M. S., Korotkov L. N., Rysiakiewicz-Pasek E. Specifi c heat and thermal expansion of triglycine sulfate–porous glass nanocomposites. Phys. Solid State, 2018, vol. 60(7), pp. 1338–1343. https://doi.org/10.1134/S1063783418070181 Korabel’nikov D. V., Zhuravlev Yu. N. Ab initio structure and vibration properties of oxyanionic crystalline hydrates. Phys. Solid State, 2018, vol. 60(10), pp. 2058-2065. https://doi.org/10.1134/S106378341810013X Koposov G. D., Bardyug D. Yu. Analysis of ice premelting in water-containing disperse media. Tech. Phys. Lett., 2007, vol. 33(7), pp. 622–624. https://doi.org/10.1134/S1063785007070243 Demikhov E. I., Dolganov V. K. Pretransitional effects near blue phases of a cholesteric liquid crystal. JETP Lett., 1983, vol. 38(8), pp. 445–447. (in Russ.) Kizel’ V. A., Panin S. I. Pretransition phenomena in cholesterics with a short helix pitch. JETP Lett., 1986, vol. 44(2), pp. 93–96. (in Russ.) Klopotov A. A., Chekalkin T. L., Gyunter V. E. Effect of preliminary deformation on the fi ne structure of a TiNi-based alloy in the premartensitic region. Tech. Phys., 2001, vol. 46(6), pp. 770–772. https://doi.org/10.1134/1.1379650 Grishkov V. N., Lotkov A. I., Dubinin S. F., Teploukhov S.G., Parkhomenko V.D. Short-wavelength atomic-displacement modulation preceding the B2 →B19’ martensitic transformation in a TiNi-based alloy. Phys. Solid State, 2004, vol. 46(8), pp. 1386–1393. https://doi.org/10.1134/1.1788767 Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Phase transition in a KPb2Br5 crystal. Phys. Solid State, 2005, vol. 47(2), pp. 332–336. https://doi.org/10.1134/1.1866415 Mel’nikova S. V., Fokina V. D., Laptash N. M. Phase transitions in oxyfl uoride (NH4)2WO2F4. Phys. Solid State, 2006, vol. 48(1), pp. 117–121. https://doi.org/10.1134/S1063783406010239 Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Search for and study of phase transitions in some representatives of the APb2X5 family. Phys. Solid State, 2006, vol. 48(11), pp. 2152–2156. https://doi.org/10.1134/S1063783406110217 Mel’nikova S. V., Laptash N. M., Aleksandrov K. S. Optical studies of phase transitions in oxyfl uoride (NH4)2NbOF5. Phys. Solid State, 2010, vol. 52(10), pp. 2168–2172. https://doi.org/10.1134/S1063783410100240 Slyadnikov E. E. Pretransition state and structural transition in a deformed crystal. Phys. Solid State, 2004, vol. 46(6), pp. 1095–1100. https://doi.org/10.1134/1.1767251 Belyaev A. P., Rubets V. P., Antipov V. V. Infl uence of temperature on the rhombic shape of paracetamol molecular crystals. Technical Physics, 2017, vol. 62(4), pp. 645-647. https://doi.org/10.1134/S1063784217040041 Aliev A. R., Gafurov M. M., Akhmedov I. R., Kakagasanov M.G., Aliev Z.A. Structural phase transition peculiarities in ion-molecular perchlorate crystals. Phys. Solid State, 2018, vol. 60(6), pp. 1203–1213. https://doi.org/10.1134/S1063783418060045 Maksimov V. I., Maksimova E. N., Surkova T. P., Vokhmyanin A. P. On possible states of the crystal structure preceding to a phase transition in Zn1–xVxSe (0.01 ≤ x ≤ 0.10) crystals. Phys. Solid State, 2018, vol . 60(12), pp. 2424–2435. https://doi.org/10.1134/S1063783419010177 Vtyurin A. N., Bulou A., Krylov A. S., Afanas’ev M. L., Shebanin A. P. The cubic-to-monoclinic phase transition in (NH4)3ScF6 cryolite: A Raman scattering study. Phys. Solid State, 2001, vol. 43(12), pp. 2307–2310. https://doi.org/10.1134/1.1427961 Karpov S. V., Shultin A. A. Orientational melting and pretransition in ordered phases of rubidium and cesium nitrates. Sov. Phys. Solid State, 1975, vol. 17(10), pp. 1915–1919. (in Russ.) Gafurov M. M., Aliev A. R., Akhmedov I. R. Raman and infrared study of the crystals with molecular anions in the region of the solid – liquid phase transition. Spectrochim. Acta, 2002, vol. 58A(12), pp. 2683–2692. https://doi.org/10.1016/S1386-1425(02)00014-8 Gafurov M. M., Aliev A. R. Molecular relaxation processes in the salt systems containing anions of various configurations. Spectrochim. Acta, 2004, vol. 60A(7), pp. 1549–1555. https://doi.org/10.1016/j.saa.2003.06.004 Chemical Encyclopedy. V. 2. Moscow, Sov. Entsiklopediya, 1990, p. 289 (in Russ.) Bale C. W., Pelton A. D. Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li2CO3, K2CO3, Na2CO3, LiOH, KOH, NaOH, Li2SO4, K2SO4 and Na2SO4. CALPHAD, 1982, vol. 6(4), pз. 255–278. https://doi.org/10.1016/0364-5916(82)90020-7 Dessureault Y., Sangster J., Pelton A. D. Coupledphase diagram / thermodynamic analysis of the ninecommon-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium. J. Electrochem. Soc., 1990, vol. 137(9), pр. 2941–2950. https://doi.org/10.1149/1.2087103 Lindberg D., Backman R., Chartrand P. Thermodynamic evaluation and optimization of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system. J. Chem. Thermodynamics, 2007, vol. 39, pp. 942–960. https://doi.org/10.1016/j.jct.2006.11.002 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states in solid “nitrate – nitrite” binary systems. Opt. Spectrosc., 2017, vol. 123(4), pp. 587–589. https://doi.org/10.1134/S0030400X17100022

19

Agrafonov,YuryV., and IvanS.Petrushin. "Random First Order Transition from a Supercooled Liquid to an Ideal Glass (Review)." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no.3 (September18, 2020): 291–302. http://dx.doi.org/10.17308/kcmf.2020.22/2959.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The random first order transition theory (RFOT) describing the transition from a supercooled liquid to an ideal glass has been actively developed over the last twenty years. This theory is formulated in a way that allows a description of the transition from the initial equilibrium state to the final metastable state without considering any kinetic processes. The RFOT and its applications for real molecular systems (multicomponent liquids with various intermolecular potentials, gel systems, etc.) are widely represented in English-language sources. However, these studies are practically not described in any Russian sources. This paper presents an overview of the studies carried out in this field. REFERENCES 1. Sanditov D. S., Ojovan M. I. Relaxation aspectsof the liquid—glass transition. Uspekhi FizicheskihNauk. 2019;189(2): 113–133. DOI: https://doi.org/10.3367/ufnr.2018.04.0383192. Tsydypov Sh. B., Parfenov A. N., Sanditov D. S.,Agrafonov Yu. V., Nesterov A. S. Application of themolecular dynamics method and the excited statemodel to the investigation of the glass transition inargon. Available at: http://www.isc.nw.ru/Rus/GPCJ/Content/2006/tsydypov_32_1.pdf (In Russ.). GlassPhysics and Chemistry. 2006;32(1): 83–88. DOI: https://doi.org/10.1134/S10876596060101113. Berthier L., Witten T. A. Glass transition of densefluids of hard and compressible spheres. PhysicalReview E. 2009;80(2): 021502. DOI: https://doi.org/10.1103/PhysRevE.80.0215024. Sarkisov G. N. Molecular distribution functionsof stable, metastable and amorphous classical models.Uspekhi Fizicheskih Nauk. 2002;172(6): 647–669. DOI:https://doi.org/10.3367/ufnr.0172.200206b.06475. Hoover W. G., Ross M., Johnson K. W., HendersonD., Barker J. A., Brown, B. C. Soft-sphere equationof state. The Journal of Chemical Physics, 1970;52(10):4931–4941. DOI: https://doi.org/10.1063/1.16727286. Cape J. N., Woodco*ck L. V. Glass transition in asoft-sphere model. The Journal of Chemical Physics,1980;72(2): 976–985. DOI: https://doi.org/10.1063/1.4392177. Franz S., Mezard M., Parisi G., Peliti L. Theresponse of glassy systems to random perturbations:A bridge between equilibrium and off-equilibrium.Journal of Statistical Physics. 1999;97(3–4): 459–488.DOI: https://doi.org/10.1023/A:10046029063328. Marc Mezard and Giorgio Parisi. Thermodynamicsof glasses: a first principles computation. J. of Phys.:Condens. Matter. 1999;11: A157–A165.9. Berthier L., Jacquin H., Zamponi F. Microscopictheory of the jamming transition of harmonic spheres.Physical Review E, 2011;84(5): 051103. DOI: https://doi.org/10.1103/PhysRevE.84.05110310. Berthier L., Biroli, G., Charbonneau P.,Corwin E. I., Franz S., Zamponi F. Gardner physics inamorphous solids and beyond. The Journal of ChemicalPhysics. 2019;151(1): 010901. DOI: https://doi.org/10.1063/1.5097175 11. Berthier L., Ozawa M., Scalliet C. Configurationalentropy of glass-forming liquids. The Journal ofChemical Physics. 2019;150(16): 160902. DOI: https://doi.org/10.1063/1.509196112. Bomont J. M., Pastore G. An alternative schemeto find glass state solutions using integral equationtheory for the pair structure. Molecular Physics.2015;113(17–18): 2770–2775. DOI: https://doi.org/10.1080/00268976.2015.103832513. Bomont J. M., Hansen J. P., Pastore G.Hypernetted-chain investigation of the random firstordertransition of a Lennard-Jones liquid to an idealglass. Physical Review E. 2015;92(4): 042316. DOI:https://doi.org/10.1103/PhysRevE.92.04231614. Bomont J. M., Pastore G., Hansen J. P.Coexistence of low and high overlap phases in asupercooled liquid: An integral equation investigation.The Journal of Chemical Physics. 2017;146(11): 114504.DOI: https://doi.org/10.1063/1.497849915. Bomont J. M., Hansen J. P., Pastore G. Revisitingthe replica theory of the liquid to ideal glass transition.The Journal of Chemical Physics. 2019;150(15): 154504.DOI: https://doi.org/10.1063/1.508881116. Cammarota C., Seoane B. First-principlescomputation of random-pinning glass transition, glasscooperative length scales, and numerical comparisons.Physical Review B. 2016;94(18): 180201. DOI: https://doi.org/10.1103/PhysRevB.94.18020117. Charbonneau P., Ikeda A., Parisi G., Zamponi F.Glass transition and random close packing above threedimensions. Physical Review Letters. 2011;107(18):185702. DOI: https://doi.org/10.1103/PhysRevLett.107.18570218. Ikeda A., Miyazaki K. Mode-coupling theory asa mean-field description of the glass transition.Physical Review Letters. 2010;104(25): 255704. DOI:https://doi.org/10.1103/PhysRevLett.104.25570419. McCowan D. Numerical study of long-timedynamics and ergodic-nonergodic transitions in densesimple fluids. Physical Review E. 2015;92(2): 022107.DOI: https://doi.org/10.1103/PhysRevE.92.02210720. Ohtsu H., Bennett T. D., Kojima T., Keen D. A.,Niwa Y., Kawano M. Amorphous–amorphous transitionin a porous coordination polymer. ChemicalCommunications. 2017;53(52): 7060–7063. DOI:https://doi.org/10.1039/C7CC03333H21. Schmid B., Schilling R. Glass transition of hardspheres in high dimensions. Physical Review E.2010;81(4): 041502. DOI: https://doi.org/10.1103/PhysRevE.81.04150222. Parisi G., Slanina, F. Toy model for the meanfieldtheory of hard-sphere liquids. Physical Review E.2000;62(5): 6554. DOI: https://doi.org/10.1103/Phys-RevE.62.655423. Parisi G., Zamponi F. The ideal glass transitionof hard spheres. The Journal of Chemical Physics.2005;123(14): 144501. DOI: https://doi.org/10.1063/1.204150724. Parisi G., Zamponi F. Amorphous packings ofhard spheres for large space dimension. Journal ofStatistical Mechanics: Theory and Experiment. 2006;03:P03017. DOI: https://doi.org/10.1088/1742-5468/2006/03/P0301725. Parisi G., Procaccia I., Shor C., Zylberg J. Effectiveforces in thermal amorphous solids with genericinteractions. Physical Review E. 2019;99(1): 011001. DOI:https://doi.org/10.1103/PhysRevE.99.01100126. Stevenson J. D., Wolynes P. G. Thermodynamic −kinetic correlations in supercooled liquids: a criticalsurvey of experimental data and predictions of therandom first-order transition theory of glasses. TheJournal of Physical Chemistry B. 2005;109(31): 15093–15097. DOI: https://doi.org/10.1021/jp052279h27. Xia X., Wolynes P. G. Fragilities of liquidspredicted from the random first order transition theoryof glasses. Proceedings of the National Academy ofSciences. 2000;97(7): 2990–2994. DOI: https://doi.org/10.1073/pnas.97.7.299028. Kobryn A. E., Gusarov S., Kovalenko A. A closurerelation to molecular theory of solvation formacromolecules. Journal of Physics: Condensed Matter.2016; 28 (40): 404003. DOI: https://doi.org/10.1088/0953-8984/28/40/40400329. Coluzzi B. , Parisi G. , Verrocchio P.Thermodynamical liquid-glass transition in a Lennard-Jones binary mixture. Physical Review Letters.2000;84(2): 306. DOI: https://doi.org/10.1103/PhysRevLett.84.30630. Sciortino F., Tartaglia P. Extension of thefluctuation-dissipation theorem to the physical agingof a model glass-forming liquid. Physical Review Letters.2001;86(1): 107. DOI: https://doi.org/10.1103/Phys-RevLett.86.10731. Sciortino, F. One liquid, two glasses. NatureMaterials. 2002;1(3): 145–146. DOI: https://doi.org/10.1038/nmat75232. Farr R. S., Groot R. D. Close packing density ofpolydisperse hard spheres. The Journal of ChemicalPhysics. 2009;131(24): 244104. DOI: https://doi.org/10.1063/1.327679933. Barrat J. L., Biben T., Bocquet, L. From Paris toLyon, and from simple to complex liquids: a view onJean-Pierre Hansen’s contribution. Molecular Physics.2015;113(17-18): 2378–2382. DOI: https://doi.org/10.1080/00268976.2015.103184334. Gaspard J. P. Structure of Melt and Liquid Alloys.In Handbook of Crystal Growth. Elsevier; 2015. 580 p.DOI: https://doi.org/10.1016/B978-0-444-56369-9.00009-535. Heyes D. M., Sigurgeirsson H. The Newtonianviscosity of concentrated stabilized dispersions:comparisons with the hard sphere fluid. Journal ofRheology. 2004;48(1): 223–248. DOI: https://doi.org/10.1122/1.163498636. Ninarello A., Berthier L., Coslovich D. Structureand dynamics of coupled viscous liquids. MolecularPhysics. 2015;113(17-18): 2707–2715. DOI: https://doi.org/10.1080/00268976.2015.103908937. Russel W. B., Wagner N. J., Mewis J. Divergencein the low shear viscosity for Brownian hard-spheredispersions: at random close packing or the glasstransition? Journal of Rheology. 2013;57(6): 1555–1567.DOI: https://doi.org/10.1122/1.482051538. Schaefer T. Fluid dynamics and viscosity instrongly correlated fluids. Annual Review of Nuclearand Particle Science. 2014;64: 125–148. DOI: https://doi.org/10.1146/annurev-nucl-102313-02543939. Matsuoka H. A macroscopic model thatconnects the molar excess entropy of a supercooledliquid near its glass transition temperature to itsviscosity. The Journal of Chemical Physics. 2012;137(20):204506. DOI: https://doi.org/10.1063/1.476734840. de Melo Marques F. A., Angelini R., Zaccarelli E.,Farago B., Ruta B., Ruocco, G., Ruzicka B. Structuraland microscopic relaxations in a colloidal glass. SoftMatter. 2015;11(3): 466–471. DOI: https://doi.org/10.1039/C4SM02010C41. Deutschländer S., Dillmann P., Maret G., KeimP. Kibble–Zurek mechanism in colloidal monolayers.Proceedings of the National Academy of Sciences.2015;112(22): 6925–6930. DOI: https://doi.org/10.1073/pnas.150076311242. Chang J., Lenhoff A. M., Sandler S. I.Determination of fluid–solid transitions in modelprotein solutions using the histogram reweightingmethod and expanded ensemble simulations. TheJournal of Chemical Physics. 2004;120(6): 3003–3014.DOI: https://doi.org/10.1063/1.163837743. Gurikov P., Smirnova I. Amorphization of drugsby adsorptive precipitation from supercriticalsolutions: a review. The Journal of Supercritical Fluids.2018;132: 105–125. DOI: https://doi.org/10.1016/j.supflu.2017.03.00544. Baghel S., Cathcart H., O’Reilly N. J. Polymericamorphoussolid dispersions: areviewofamorphization, crystallization, stabilization, solidstatecharacterization, and aqueous solubilization ofbiopharmaceutical classification system class II drugs.Journal of Pharmaceutical Sciences. 2016;105(9):2527–2544. DOI: https://doi.org/10.1016/j.xphs.2015.10.00845. Kalyuzhnyi Y. V., Hlushak S. P. Phase coexistencein polydisperse multi-Yukawa hard-sphere fluid: hightemperature approximation. The Journal of ChemicalPhysics. 2006;125(3): 034501. DOI: https://doi.org/10.1063/1.221241946. Mondal C., Sengupta S. Polymorphism,thermodynamic anomalies, and network formation inan atomistic model with two internal states. PhysicalReview E. 2011;84(5): 051503. DOI: https://doi.org/10.1103/PhysRevE.84.05150347. Bonn D., Denn M. M., Berthier L., Divoux T.,Manneville S. Yield stress materials in soft condensedmatter. Reviews of Modern Physics. 2017;89(3): 035005.DOI: https://doi.org/10.1103/RevModPhys.89.03500548. Tanaka H. Two-order-parameter model of theliquid–glass transition. I. Relation between glasstransition and crystallization. Journal of Non-Crystalline Solids. 2005;351(43-45): 3371–3384. DOI:https://doi.org/10.1016/j.jnoncrysol.2005.09.00849. Balesku R. Ravnovesnaya i neravnovesnayastatisticheskaya mekhanika [Equilibrium and nonequilibriumstatistical mechanics]. Moscow: Mir Publ.;1978. vol. 1. 404 c. (In Russ.)50. Chari S., Inguva R., Murthy K. P. N. A newtruncation scheme for BBGKY hierarchy: conservationof energy and time reversibility. arXiv preprintarXiv: 1608. 02338. DOI: https://arxiv.org/abs/1608.0233851. Gallagher I., Saint-Raymond L., Texier B. FromNewton to Boltzmann: hard spheres and short-rangepotentials. European Mathematical Society.arXiv:1208.5753. DOI: https://arxiv.org/abs/1208.575352. Rudzinski J. F., Noid W. G. A generalized-Yvon-Born-Green method for coarse-grained modeling. TheEuropean Physical Journal Special Topics. 224(12),2193–2216. DOI: https://doi.org/10.1140/epjst/e2015-02408-953. Franz B., Taylor-King J. P., Yates C., Erban R.Hard-sphere interactions in velocity-jump models.Physical Review E. 2016;94(1): 012129. DOI: https://doi.org/10.1103/PhysRevE.94.01212954. Gerasimenko V., Gapyak I. Low-Densityasymptotic behavior of observables of hard spherefluids. Advances in Mathematical Physics. 2018:6252919. DOI: https://doi.org/10.1155/2018/625291955. Lue L. Collision statistics, thermodynamics,and transport coefficients of hard hyperspheres inthree, four, and five dimensions. The Journal ofChemical Physics. 2005;122(4): 044513. DOI: https://doi.org/10.1063/1.183449856. Cigala G., Costa D., Bomont J. M., Caccamo C.Aggregate formation in a model fluid with microscopicpiecewise-continuous competing interactions.Molecular Physics. 2015;113(17–18): 2583–2592.DOI: https://doi.org/10.1080/00268976.2015.107800657. Jadrich R., Schweizer K. S. Equilibrium theoryof the hard sphere fluid and glasses in the metastableregime up to jamming. I. Thermodynamics. The Journalof Chemical Physics. 2013;139(5): 054501. DOI: https://doi.org/10.1063/1.481627558. Mondal A., Premkumar L., Das S. P. Dependenceof the configurational entropy on amorphousstructures of a hard-sphere fluid. Physical Review E.2017;96(1): 012124. DOI: https://doi.org/10.1103/PhysRevE.96.01212459. Sasai M. Energy landscape picture ofsupercooled liquids: application of a generalizedrandom energy model. The Journal of Chemical Physics.2003;118(23): 10651–10662. DOI: https://doi.org/10.1063/1.157478160. Sastry S. Liquid limits: Glass transition andliquid-gas spinodal boundaries of metastable liquids.Physical Review Letters. 2000;85(3): 590. DOI: https://doi.org/10.1103/PhysRevLett.85.59061. Uche O. U., Stillinger F. H., Torquato S. On therealizability of pair correlation functions. Physica A:Statistical Mechanics and its Applications. 2006;360(1):21–36. DOI: https://doi.org/10.1016/j.physa.2005.03.05862. Bi D., Henkes S., Daniels K. E., Chakraborty B.The statistical physics of athermal materials. Annu.Rev. Condens. Matter Phys. 2015;6(1): 63–83. DOI:https://doi.org/10.1146/annurev-conmatphys-031214-01433663. Bishop M., Masters A., Vlasov A. Y. Higher virialcoefficients of four and five dimensional hardhyperspheres. The Journal of Chemical Physics.2004;121(14): 6884–6886. DOI: https://doi.org/10.1063/1.177757464. Sliusarenko O. Y., Chechkin A. V., SlyusarenkoY. V. The Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy and Fokker-Planck equation for manybodydissipative randomly driven systems. Journal ofMathematical Physics. 2015;56(4): 043302. DOI:https://doi.org/10.1063/1.491861265. Tang Y. A new grand canonical ensemblemethod to calculate first-order phase transitions. TheJournal of chemical physics. 2011;134(22): 224508. DOI:https://doi.org/10.1063/1.359904866. Tsednee T., Luchko T. Closure for the Ornstein-Zernike equation with pressure and free energyconsistency. Physical Review E. 2019;99(3): 032130.DOI: https://doi.org/10.1103/PhysRevE.99.03213067. Maimbourg T., Kurchan J., Zamponi, F. Solutionof the dynamics of liquids in the large-dimensionallimit. Physical review letters. 2016;116(1): 015902. DOI:https://doi.org/10.1103/PhysRevLett.116.01590268. Mari, R., & Kurchan, J. Dynamical transition ofglasses: from exact to approximate. The Journal ofChemical Physics. 2011;135(12): 124504. DOI: https://doi.org/10.1063/1.362680269. Frisch H. L., Percus J. K. High dimensionalityas an organizing device for classical fluids. PhysicalReview E. 1999;60(3): 2942. DOI: https://doi.org/10.1103/PhysRevE.60.294270. Finken R., Schmidt M., Löwen H. Freezingtransition of hard hyperspheres. Physical Review E.2001;65(1): 016108. DOI: https://doi.org/10.1103/PhysRevE.65.01610871. Torquato S., Uche O. U., Stillinger F. H. Randomsequential addition of hard spheres in high Euclideandimensions. Physical Review E. 2006;74(6): 061308.DOI: https://doi.org/10.1103/PhysRevE.74.06130872. Martynov G. A. Fundamental theory of liquids;method of distribution functions. Bristol: Adam Hilger;1992, 470 p.73. Vompe A. G., Martynov G. A. The self-consistentstatistical theory of condensation. The Journal ofChemical Physics. 1997;106(14): 6095–6101. DOI:https://doi.org/10.1063/1.47327274. Krokston K. Fizika zhidkogo sostoyaniya.Statisticheskoe vvedenie [Physics of the liquid state.Statistical introduction]. Moscow: Mir Publ.; 1978.400 p. (In Russ.)75. Rogers F. J., Young D. A. New, thermodynamicallyconsistent, integral equation for simple fluids. PhysicalReview A. 1984;30(2): 999. DOI: https://doi.org/10.1103/PhysRevA.30.99976. Wertheim M. S. Exact solution of the Percus–Yevick integral equation for hard spheres Phys. Rev.Letters. 1963;10(8): 321–323. DOI: https://doi.org/10.1103/PhysRevLett.10.32177. Tikhonov D. A., Kiselyov O. E., Martynov G. A.,Sarkisov G. N. Singlet integral equation in thestatistical theory of surface phenomena in liquids. J.of Mol. Liquids. 1999;82(1–2): 3– 17. DOI: https://doi.org/10.1016/S0167-7322(99)00037-978. Agrafonov Yu., Petrushin I. Two-particledistribution function of a non-ideal molecular systemnear a hard surface. Physics Procedia. 2015;71. 364–368. DOI: https://doi.org/10.1016/j.phpro.2015.08.35379. Agrafonov Yu., Petrushin I. Close order in themolecular system near hard surface. Journal of Physics:Conference Series. 2016;747: 012024. DOI: https://doi.org/10.1088/1742-6596/747/1/01202480. He Y., Rice S. A., Xu X. Analytic solution of theOrnstein-Zernike relation for inhom*ogeneous liquids.The Journal of Chemical Physics. 2016;145(23): 234508.DOI: https://doi.org/10.1063/1.497202081. Agrafonov Y. V., Petrushin I. S. Usingmolecular distribution functions to calculate thestructural properties of amorphous solids. Bulletinof the Russian Academy of Sciences: Physics. 2020;84:783–787. DOI: https://doi.org/10.3103/S106287382007003582. Bertheir L., Ediger M. D. How to “measure” astructural relaxation time that is too long to bemeasured? arXiv:2005.06520v1. DOI: https://arxiv.org/abs/2005.0652083. Karmakar S., Dasgupta C., Sastry S. Lengthscales in glass-forming liquids and related systems: areview. Reports on Progress in Physics. 2015;79(1):016601. DOI: https://doi.org/10.1088/0034-4885/79/1/01660184. De Michele C., Sciortino F., Coniglio A. Scalingin soft spheres: fragility invariance on the repulsivepotential softness. Journal of Physics: CondensedMatter. 2004;16(45): L489. DOI: https://doi.org/10.1088/0953-8984/16/45/L0185. Niblett S. P., de Souza V. K., Jack R. L., Wales D. J.Effects of random pinning on the potential energylandscape of a supercooled liquid. The Journal ofChemical Physics. 2018;149(11): 114503. DOI: https://doi.org/10.1063/1.504214086. Wolynes P. G., Lubchenko V. Structural glassesand supercooled liquids: Theory, experiment, andapplications. New York: John Wiley & Sons; 2012. 404p. DOI: https://doi.org/10.1002/978111820247087. Jack R. L., Garrahan J. P. Phase transition forquenched coupled replicas in a plaquette spin modelof glasses. Physical Review Letters. 2016;116(5): 055702.DOI: https://doi.org/10.1103/PhysRevLett.116.05570288. Habasaki J., Ueda A. Molecular dynamics studyof one-component soft-core system: thermodynamicproperties in the supercooled liquid and glassy states.The Journal of Chemical Physics. 2013;138(14): 144503.DOI: https://doi.org/10.1063/1.479988089. Bomont J. M., Hansen J. P., Pastore G. Aninvestigation of the liquid to glass transition usingintegral equations for the pair structure of coupledreplicae. J. Chem. Phys. 2014;141(17): 174505. DOI:https://doi.org/10.1063/1.490077490. Parisi G., Urbani P., Zamponi F. Theory of SimpleGlasses: Exact Solutions in Infinite Dimensions.Cambridge: Cambridge University Press; 2020. 324 p.DOI: https://doi.org/10.1017/978110812049491. Robles M., López de Haro M., Santos A., BravoYuste S. Is there a glass transition for dense hardspheresystems? The Journal of Chemical Physics.1998;108(3): 1290–1291. DOI: https://doi.org/10.1063/1.47549992. Grigera T. S., Martín-Mayor V., Parisi G.,Verrocchio P. Asymptotic aging in structural glasses.Physical Review B, 2004;70(1): 014202. DOI: https://doi.org/10.1103/PhysRevB.70.01420293. Vega C., Abascal J. L., McBride C., Bresme F.The fluid–solid equilibrium for a charged hard spheremodel revisited. The Journal of Chemical Physics.2003; 119 (2): 964–971. DOI: https://doi.org/10.1063/1.157637494. Kaneyoshi T. Surface amorphization in atransverse Ising nanowire; effects of a transverse field.Physica B: Condensed Matter. 2017;513: 87–94. DOI:https://doi.org/10.1016/j.physb.2017.03.01595. Paganini I. E., Davidchack R. L., Laird B. B.,Urrutia I. Properties of the hard-sphere fluid at a planarwall using virial series and molecular-dynamicssimulation. The Journal of Chemical Physics. 2018;149(1):014704. DOI: https://doi.org/10.1063/1.502533296. Properzi L., Santoro M., Minicucci M., Iesari F.,Ciambezi M., Nataf L., Di Cicco A. Structural evolutionmechanisms of amorphous and liquid As2 Se3 at highpressures. Physical Review B. 2016;93(21): 214205. DOI:https://doi.org/10.1103/PhysRevB.93.21420597. Sesé L. M. Computational study of the meltingfreezingtransition in the quantum hard-sphere systemfor intermediate densities. I. Thermodynamic results.The Journal of Chemical Physics. 2007;126(16): 164508.DOI: https://doi.org/10.1063/1.271852398. Shetty R., Escobedo F. A. On the application ofvirtual Gibbs ensembles to the direct simulation offluid–fluid and solid–fluid phase coexistence. TheJournal of Chemical Physics. 2002;116(18): 7957–7966.DOI: https://doi.org/10.1063/1.1467899

20

Kostryukov,VictorF., IrinaY.Mittova, BorisV.Sladkopevtsev, AnnaS.Parshina, and Dar’yaS.Balasheva. "Роль BiPO4, вводимого через газовую фазу, в процессе создания тонких пленок на поверхности InP." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.2 (June14, 2019): 215–24. http://dx.doi.org/10.17308/kcmf.2019.21/759.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Исследованием термооксидирования фосфида индия под воздействием фосфата висмута, вводимого через газовую фазу, установлено ускоряющее воздействие фосфата висмута на процесс формирования пленок. Величина ускорения составляет от 1.5 до 2 раз, и максимальный прирост пленки достигается в первые 10 мин оксидирования. Определяющим процессом является образование фосфата индия за счет вторичного взаимодействия оксидных форм компонентов подложки, лимитируемое диффузией оксидов в твердой фазе. Методами инфракрасной спектроскопии, локального рентгеноспектрального микроанализа и рентгенофазового анализа установлен состав пленок на поверхности InP, основными компонентами которого являются различные фосфаты индия REFERENCES Wager J. F., Wilmsen C. W. Thermal oxidation of InP. Appl. Phys., 1980, v. 51(1), pp. 812–814. https://doi.org/10.1063/1.327302 Yamaguchi M., Ando K. Thermal oxidation of InP and properties of oxide fi lm. Appl. Phys., 1980, v. 5(9), pp. 5007–5012. https://doi.org/10.1063/1.3283803. Mittova I. Ya., Borzakova G. V., Terekhov V. A., Mittov O. N, Pshestanchik V. R., Kashkarov V. M. Growth of own oxide layers on indium phosphide. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1991, v. 27(10), pp. 2047–2051. (in Russ.) Mittova I. Ya., Borzakova G. V., Terekhov V. A., Mittov O. N, Pshestanchik V. R., Kashkarov V. M. Growth of own oxide layers on indium phosphide. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1991, v. 27(10), pp. 2047–2051. (in Russ.) Minaychev V. Ye. Naneseniye plonok v vakuume. [Film deposition in vacuum]. Moscow, Vyssh. Shkola Publ., 1989, 130 p. (in Russ.) Nikitin M. M. Tekhnologiya i oborudovaniye vakuumnogo napyleniya [Technology and equipment for vacuum deposition]. Moscow, Metallurgiya Publ., 1992, 112 p. (in Russ.) Veselov A. A., Veselov A. G., Vysotsky S. L., Dzhumaliyev A. S., Filimonov Yu. A. Magnetic properties of thermally deposited Fe/GaAs (100) thin fi lms. J Technical Physics, 2002, v. 47(8), pp. 1067–1070. https://doi.org/10.1134/1.1501694 Danilin B. S. Magnetronnyye raspylitel’nyye sistemy [Magnetron Spray Systems]. Moscow, Radio i svyaz’ Publ., 1982, 72 p. Pulver D., Wilmsen C.W. Thermal oxides of In0.5Ga0.5P and In0.5Al0.5P. Vac. Sci. Technol. B., 2001, v. 19(1), pp. 207–214. https://doi.org/10.1116/1.1342008 Punkkinen M. P. J., Laukkanen P., Lеng J., Kuzmin M., Tuominen M., Tuominen V., Dahl J., Pessa M., Guina M., Kokko K., Sadowski J., Johansson B., Väyrynen I. J., Vitos L. Oxidized In-containing III–V(100) surfaces: Formation of crystalline oxide fi lms and semiconductor-oxide interfaces. Physical review, 2011, v. 83(19), pp. 195–329. https://doi.org/10.1103/Phys-RevB.83.195329 Sladkopevtsev B. V., Tomina E. V., Mittova I. Ya., Dontsov A. I., Pelipenko D. I. On the thermal oxidation of VxOy–InP heterostructures formed by the centrifugation of vanadium (V) oxide gel. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, v. 10(2), pp. 335–340. https://doi.org/10.1134/S102745101602018X Ningyi Y. Comparison of VO2 thin fi lms prepared by inorganic sol-gel and IBED methods. Appl. Phys. A., 2003, v. 78. pp. 777–780. https://doi.org/10.1007/s00339-002-2057-5 Herman M. A., Sitter H. Epitaxy: Fundamentals and Current Status. Heidelberg, Springer Science & Business Media, 2013, 382 p. Manijeh R. The MOCVD Challenge: A survey of GaInAsP–InP and GaInAsP–GaAs for photonic and electronic device applications. Boca Raton, CRC Press, 2010, 799 p. https://doi.org/10.1201/9781439807002 Mittova Ya. Multichannel reactions in chemostimulated oxidation of semiconductors – transit, conjugation, catalysis. Vestnik VGU. Serija: Himija, biologija [Bulletin of the VSU. Series: Chemistry, Biology], 2000, 2, pp. 5–12. (in Russ.) Mittova Ya. Infl uence of the physicochemical nature of chemical stimulators and the way they are introduced into a system on the mechanism of the thermal oxidation of GaAs and InP. Inorganic Materials, 2014, V. 50(9), pp. 874–881. https://doi.org/10.1134/S0020168514090088. Brauer G. A. Rukovodstvo po neorganicheskomu sintezu [Inorganic Synthesis Guide]. Moscow, Khimiya Publ., 1985, 360 с. (in Russ.) Nakamoto K. Infared and Raman Spectra of Inorganic and Coordination Compounds. New York, John Wiley & Sons Ltd, 1986, 335 p. Atlas IK-spektrov fosfatov [Atlas IR spectra of phosphates]. by R.YA. Mel’nikovoy. Moscow, Nauka Publ., 1985, 235 p. (in Russ.) Brandon D., Kaplan W. Microstructural Characterization of Materials. 2nd Edition, John Wiley & Sons Ltd, 2008, 536 p. https://doi.org/10.1002/9780470727133 International Center for Diffraction Data. 21. X-ray diffraction date cards, ASTM. X-ray diffraction date cards, ASTM. Kazenas B.K. Termodinamika ispareniya dvoynykh oksidov. [Thermodynamics of double oxide evaporation]. Мoscow, Nauka Publ., 2004, 551 p. (in Russ.)

21

Savchenko, Olena. "Psychosemantic Tools of Self-Assessing Individual Reflectivity." East European Journal of Psycholinguistics 6, no.2 (December27, 2019): 98–106. http://dx.doi.org/10.29038/eejpl.2019.6.2.sav.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

In this article, reflectivity is considered as an individual general ability to develop different attitudes to life events in order to reduce an external and internal uncertainty in situations. The objective of the research is to examine the self-assessment criteria for reflectivity with psychosemantic procedure. The author designs a modified version of the Ch. Osgood’s (1957) Semantic Differential (SD) for examining the content and formal features of the self-assessment criteria of reflectivity. This study suggests two main processes of self-assessment of reflectivity, notably differentiation and integration. The results of factor analysis indicate that individuals with high reflectivity level are aligned with low differentiation of the semantic space and monolithic nature of self-assessment criteria. The coherence and consistency of self-assessment criteria reduce the individuals’ level of inner uncertainty, transform external problems to familiar tasks and increase an efficient decision-making. A high level of differentiation is related to individual readiness to make a correct decision in the situation of multiple choice. High differentiation increases the individual adjustment and prevents from poor effects of high reflectivity. Consequently, a high level of reflectivity is associated with a low level of differentiation of self-assessment criteria. References Грановская Р.М. Психология веры. Санкт-Петербург: Питер, 2010. Карпов А.В. Психология рефлексивных механизмов деятельности. Москва: Изд-во «Институт психологии РАН», 2004. Карпов А.В., Пономарева В.В. Психология рефлексивных механизмов управ­ления. М.: Изд­во ИП РАН, 2000. Лактионов А.Н. Координаты индивидуального опыта. Харьков: Харьк. нац. ун-т им. В. Каразина, 2010. Леонтьев Д.А. Психологические ресурсы преодоления стрессовых ситуаций: к уточнению базовых конструктов. Психология стресса и совладающего поведения в современном российском обществе: Материалы II Междун. научно-практич. конференции. Кострома: КГУ им. Н.А. Некрасова, 2010, 2, 40–42. Леонтьев Д.А., Аверина А.Ж. Феномен рефлексии в контексте проблемы саморегуляции. Психологические исследования. 2011. №2(16). Режим доступа: http://psystudy.ru/index.php/num/2011n2-16/463-leontiev-averina16.html. Петренко В.Ф. Основы психосемантики. Москва: Эксмо, 2010. Похилько В. И., Федотова Е.О. Техника репертуарных решеток в экспериментальной психологии личности. Вопросы психологии, 1984. № 3, 151–157. Проблемы психологической герменевтики / Под ред. Н.В. Чепелевой. Киев : Изд-во Национального педагогического университета им. Н. П. Драгоманова, 2009. Савченко О.В. Рефлексивна компетентність особистості. Херсон : ПП Вишемирський В. С., 2016 Савченко О. Структура семантичного простору, що відображає уявлення суб’єкта про власну рефлексивну активність // East European Journal of Psycholinguistics. 2015. Т. 2 (1), 114–123. Чуприкова Н.И. Психология умственного развития: Принцип дифференциации. Москва : АО «Столетие», 1997. Gawronski, B. & Bodenhausen, G. (2006). Associative and propositional processes in evaluation: An integrative review of implicit and explicit attitude change. Psychological Bulletin, 132(5), 692-731. Halpern, D. F. (2001). Assessing the Effectiveness of Critical Thinking Instruction. The Journal of General Education, 50(4), 270–286. Harvey, O.J., Hunt, D. E., & Schroder, H. M. (1961). Conceptual System and Personality Organization. New York: Wiley & Sons. Janzen, G. (2006). The Representational Theory of Phenomenal Character: A Phenomenological Critique. Phenomenology and the Cognitive Sciences, 5, 321–339 [in English]. Kriegel, U. (2003). Consciousness as Intransitive Self-Consciousness: Two views. Canadian Journal of Philosophy, 33, 103-132. Lieberman, M. D., Gaunt, R., Gilbert, D. T., & Trope, Y. (2002). Reflexion and reflection: A social cognitive neuroscience approach to attributional inference. In Advances in experimental social psychology (Vol. 34, pp. 199-249). Academic Press. Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400–424. Peters, F. (2013). Theories of consciousness as reflexivity. The Philosophical Forum, 44, 341-372. Savchenko O. (2016b) The formation level of the components of the reflective experience as a factor of the students` educational success. Psychological Prospects, 28, 269-282. References (translated and transliterated) Granovskaya, R. M. (2010). Psihologiya Very [Psychology of Faith]. S.-Petersburg: Piter. Karpov, A. V. (2004). Psihologiya Refleksivnyh Mehanizmov Deyatelnosti [Psychology of Reflective Activity Mechanisms]. Moscow: Institute of Psychology of the Russian Academy of Sciences. Karpov, A. V., Ponomareva, V. V. (2000). Psihologiya Refleksivnyh Mehanizmov Upravleniya [Psychology of Reflective Management Mechanisms]. Moscow: Institute of Psychology of the Russian Academy of Sciences. Laktionov, A.N. (2010). Koordinaty Individualnogo Opyta [Coordinates of Individual Experience]. Kharkiv: Karazin National University of Kharkiv. Leontyev, D. A. (2010). Psihologicheskie resursyi preodoleniya stressovyih situatsiy: k utochneniyu bazovyih konstruktov [Psychological resources of stressful situations overcoming: to clarify the basic constructs]. Psychology of Stress and Coping Behavior in Modern Russian Society. Book of Abstracts of the 2nd International Scientific and Applied Conference, 2. Kostroma: Nekrasov Kostroma State University. (40-42). Leontyev, D.A., Averina, A. Zh. (2011). Fenomen refleksii v kontekste problemyi samoregulyatsii [The phenomenon of reflection in the context of the problem of self-regulation]. Psihologicheskie Issledovaniya, 2(16). Retrieved from http://psystudy.ru/index.php/num/2011n2-16/463-leontiev-averina16.html. Petrenko, V.F. (2010). Osnovyi Psihosemantiki [Fundamentals of Psychosemantics]. Moscow: Eksmo. Pohilko, V. I., Fedotova, E. O. (1984). Tehnika repertuarnyih reshetok v eksperimentalnoy psihologii lichnosti [Repertory grid technique in experimental psychology of personality.]. Voprosy Psihologii, 3, 151–157. Chepeleva, N. V. (Ed.). (2009). Problemy Psihologicheskoy Germenevtiki [Issues of Psychological Hermeneutics]. Kyiv: Drahomanov National Pedagogical University. Savchenko, O.V. (2016a). Refleksyvna Kompetentnist Osobystosti [Personality`s Reflective Competence]. Kherson: Vyshemyrskyi. Savchenko, O. (2015). Struktura semantychnoho prostoru, shcho vidobrazhaie uiavlennia subyekta pro vlasnu refleksyvnu aktyvnist [The Semantic space structure of the subject’s sonception of his own mental activity]. East European Journal of Psycholinguistics, 2(1), 114–123. Chuprikova, N. I. (1997). Psihologiya Umstvennogo Razvitiya: Printsip Differentsiatsii [Psychology of Mental Development: The Principle of Differentiation.]. Moscow: Stoletiye. Gawronski, B. & Bodenhausen, G.V. (2006). Associative and propositional processes in evaluation: An integrative review of implicit and explicit attitude change. Psychological Bulletin, 132(5), 692-731. Halpern, D. F. (2001). Assessing the effectiveness of critical thinking instruction. The Journal of General Education, 50(4), 270–286. Harvey, O.J., Hunt, D. E., & Schroder, H. M. (1961). Conceptual System and Personality Organization. New York: Wiley & Sons. Janzen, G. (2006). The Representational Theory of Phenomenal Character: A Phenomenological Critique. Phenomenology and the Cognitive Sciences, 5, 321–339. Kriegel, U. (2003). Consciousness as Intransitive Self-Consciousness: Two views. Canadian Journal of Philosophy, 33, 103-132. Lieberman, M. D., Gaunt, R., Gilbert, D. T., & Trope, Y. (2002). Reflexion and reflection: A social cognitive neuroscience approach to attributional inference. In M. P. Zanna (Ed.), Advances in experimental social psychology, 34 (pp. 199–249). Academic Press. Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400–424. Peters, F. (2013). Theories of consciousness as reflexivity. The Philosophical Forum, 44, 341-372. Savchenko O. (2016b) The formation level of the components of the reflective experience as a factor of the students` educational success. Psychological Prospects, 28, 269-282.

22

CHERNOLUTSKAIA,E.N. "ENGLISH LANGUAGE HISTORIOGRAPHY ON POLITICAL TRANSFORMATIONS IN THE RUSSIAN FAR EAST IN THE 1990S – EARLY 2000S." Historical and social-educational ideas 10, no.3/1 (July16, 2018): 114–23. http://dx.doi.org/10.17748/2075-9908-2018-10-3/1-114-123.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The modern political history of the Russian Far East is poorly covered in English language historiography. Of the last 30 years, Western experts subjected to a certain analysis the period of the 1990searly 2000s, when the Russian society underwent rapid transformations. Their scientific comprehension practically went in real time, that imposed restrictions on the formulation of problems, the depth of their analysis, the sources used. The issue of the power transformation in the Far East is considered mainly within the framework of the concept of center-peripheral relations. The works of R. Valliant, F. Chang, S. Davis, and others reveals Moscow's policy to control the region and tactics of regional leaders trying to reduce this control. The authors describe such relations in close connection with the development of federalism in the RF and its “asymmetry”. The publications reflect the evolution of the regional political elite, the change of types of governors – from “humanitarians” to “industrialists” and representatives of political parties, describe the political portraits of the Far Eastern governors, much attention is paid to the criminalization of power (R. Orttung, etc.). A special type of regional power is highlighted by experts in connection with the victory of three “resource oligarchs” in the 2000 gubernatorial elections, including R. Abramovich in Chukotka, that is estimated in the publications as an “administrative revolution”, the transition to corporate governance, in which all branches of power in the region are concentrated in the hands of representatives of a large resource corporation (N. Thompson, D. Anderson).

23

Syrkov,AndreyG., Igor’V.Pleskunov, VladimirV.Taraban, VitaliiS.Kavun, and AlekseiN.Kushchenko. "Изменение сорбционных свойств дисперсной меди, содержащей в поверхностном слое аммониевых соединений при взаимодействии с парами воды." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.1 (March6, 2019): 146–54. http://dx.doi.org/10.17308/kcmf.2019.21/725.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Установлено, что при длительном (24-216 ч) взаимодействии насыщенных паров воды с поверхностно-модифицированными порошками на основе меди ПМС-1 величина сорбции воды (a, g/g) изменяется по сложному закону. Предложено математическое описание процесса, позволяющее с относительной погрешностью 5-7 % аппроксимировать опытные данные по временным зависимостям a = f(t) и 1/а = F(t) на основе линейной функции и функции Гаусса. Показано, что среди образцов на основе меди c нанесенными четвертичными соединениями аммония (триамон – Т и алкамон – А) и органогидридсилоксаном (из паров ГКЖ – гидрофобизирующей кремнийорганической жидкости), наиболее гидрофобными являются образцы вида Cu/A/ГКЖ и Cu/T/A с последовательно нанесенными слоями структурно подобных веществ. ЛИТЕРАТУРА Chen J, Javaheri H., Sulaiman B., Dahman Y. Synthesis, characterization and applications of nanoparticles. Chapter 1 in book: Fabrication and Self-Assembly of Nanobiomaterials, 2016. 1-27 pp. https://doi.org/10.1016/b978-0-323-41533-0.00001-5 Beloglazov I. N., Syrkov A. G. Khimiko-fizicheskie osnovy i metody polucheniya poverkhnostno-nanostrukturirovannykh metallov [Chemicophysical Basics and Methods of Obtaining of Surface-Nanostructured Metals]. Saint-Petersburg, SPbGU Publ., 2011. 72 p. (in Russ.) Schwaminger S., Surya R., Filser S., et. al. Scientific Reports, 2017, vol. 7, 9 p. https://doi.org/10.1038/s41598-017-12791-9 Syrkov A. G., Taraban V. V., Nazarova E. A. Condensed Matter and Interphases, 2012, vol. 14, no. 2. pp. 150-154. URL: http://www.kcmf.vsu.ru/resources/t_14_2_2012_002.pdf (in Russ.) Syrkov A. G., Sychev M. M., Silivanov M. O., Rozhkova N. N. Glass Physics and Chemistry, 2018, vol. 44, no. 5, pp. 474-479. https://doi.org/10.1134/s1087659618050206 Kamalova T. G. Peculiarities of adsorption-chemical and antifriction properties of metals, containing low-dimensional forms of ammonium compounds on surface. cand. chem. sci., Saint-Petersburg, 2017, 104 p. (in Russ.) Spravochnik khimika. Khimicheskoe ravnovesie i kinetika. Svoistva rastvorov. Elektrodnye protsessy. T. III., 2-e izdanie, pererabotannoe i dopolnennoe [Data Book of Chemist. Chemical Equilibrium and Kinetics. Properties of Solutions. Electrode Processes.]. Leningrad: Khimiya Publ., 1964. 1008 p. (in Russ.) Roberts M., Makki Ch. Khimiya poverkhnosti razdela metal-gaz [Chemistry of metal-gas interface]. Мoscow, Mir Publ., 1989, 359 p. (in Russ.) Lowell S., Shields J. E. Adsorption Isotherms. Chapter in: Powder Surface Area and Porosity. Springer, Dordrecht. 1984, 11-13 https://doi.org/10.1007/978-94-009-5562-2_3 Khananashvili L.N., Andrianov K. A. Tekhnologiya elementoorganicheskikh monomerov i polimerov [Technology of Organoelement Monomers and Polymers]. Moscow, Khimiya Publ., 1983. 380 p. (in Russ.) Romankov P. G., Frolov V. F., Fislyuk O. M. Metody rascheta processov i apparartov khimicheskoi tekhnologii (primery i zadachi): uchebnoe posobie dlya vuzov [Calculation Methods of Processes and Equipments of Chemistry Technology (examples and exercises): University Training Manual]. Saint-Petersburg, Khimizdat Publ., 2009. 544 p. (in Russ.) Syrkov A. G. Nanotekhnologiya i nanomaterialy. Rol’ neravnovesnykh protsessov [Nanotechnology and Nanomaterials. Role of Nonequilibrium Processes]. Saint-Petersburg, Izdatel’stvo Politekhnicheskogo universiteta Publ., 2016. 194 p. (in Russ.) Syrkov A. G. Russian Journal of General Chemistry,2015, vol. 85, no. 6, pp. 1538-1539. https://doi.org/10.1134/s1070363215060304 Metallovedenie, obrabotka i primenenie alyuminievykh splavov. Spravochnik [Aluminium. Metal Science, Treatment and Using of Aluminum Alloy. Data Book]. Moscow, Metallurgiya Publ., 1972, 664 p. (in Russ.)

24

Lynnyk,M.S. "Rostislav Genika: performer, teacher, composer." Problems of Interaction Between Arts, Pedagogy and the Theory and Practice of Education 54, no.54 (December10, 2019): 39–54. http://dx.doi.org/10.34064/khnum1-54.03.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Under consideration are various facets of the creative work of Rostislav Genika, a comprehensively educated musician, universally gifted personality, one of the founders of the Kharkov piano school. The research is based on the study of critical reviews of R. Genika’s and his students’ concerts. Under analysis is the main genre of R. Genika as a composer and pianist – a transcription represented by the piece “Concert Paraphrase” to the motive of “Kupava’s Complaints” from P. Tchaikovsky’s music to the play “The Snow Maiden” by A. Ostrovsky. Rostislav Genika (1859 – 1942?) focused on piano art, which can be considered the key basis of all his theoretical, historical and musical-critical generalizations and conclusions, as well as practical activities as a performer, teacher and composer. The education received by R. Genika in the class of N. Rubinstein at the Moscow Conservatory prompted the Kharkov musician to pay tribute to piano performance in the early stages of his career. The information about the pianist R. Genika, which came to us from publications in the press and the memoirs of his colleagues, gives an opportunity to reconstruct, although not in full, the style of his piano playing as a soloist, ensemble performer and accompanist. All this together constituted the subject of a comprehensive review and the relevance of this article. The research material includes reviews of R. Genika’s concerts and an example of his composer’s heritage in the field of piano music – a transcription “Concert Paraphrase” to the motive “Kupava’s Complaints” from P. Tchaikovsky’s music to the play “The Snow Maiden” by A. Ostrovsky. The purpose of the paper is to reveal the universalism of the composer’s talent, the scale of his work, which was mainly focused on piano performance, through the analysis of various aspects of Rostislav Genika’s creative work. It would be wrong to call R. Genika a concert pianist in the traditional sense of the word. He had few solo concerts in his practice and they refer to the very beginning of his work career in Kharkov. As a concertist, he mostly performed works mastered in the class of N. Rubinstein, as well as piano parts in various ensembles, learnt by him when playing with “K. Gorsky Quartet” and other ensemble performers. The piano repertoire of R. Genika included pieces by I. S. Bach, G. Handel, D. Scarlatti, L. van Beethoven, K. M. Weber, F. Liszt, F. Chopin, R. Schumann, M. Mussorgsky, P. Tchaikovsky and others. Raised on the best examples of piano music, R. Genika appreciated such an interpretation that would meet not only the criteria of "accuracy", but would also be spiritually filled, sublimely emotional, and not outwardly ostentatious. Since the first days of working in Kharkov R. Genika, was able to combine lecturing, performing and correspondent activities with piano pedagogy. The sphere of pedagogy was one of the prevailing and time-consuming in his life. There is quite little information about R. Genika as a teacher and it can be found mainly in the reviews of his students’ concerts, in the notes of the local press as well as in the reports on academic concerts and exams at Kharkov Music College and Conservatory. The personal pianistic experience of R. Genika and the pedagogical style of his teacher N. Rubinshtein affected the choice of virtuoso programs and concert programs for his students. R. Genika’s composing experiments are closely related to his concert-pianistic and pedagogical work, as well as to the study of piano music history. The circle of his genre interests in this area was quite symptomatic. As an ardent supporter of concert pianism traditions R. Genika considered the genre of transcriptions and arangementds in the Liszt-Talberg spirit to be a new wave in piano literature of that time, a promising direction. This is how his transcriptions to the motives from “Parsifal” by R. Wagner, a piano arrangement of the “Arabic Dance” from the “Nutcracker” by P. Tchaikovsky, a fantasy “Abyss” to the motive of E. Grieg appeared. R. Genika also wrote short pieces intended for his concerts, as well as for educational practice. Unfortunately, the score of these works are still either not found or not preserved. An exception is the “Concert Paraphrase” to the motive of “Kupava’s Complaints” from P. Tchaikovsky’s music to the play “Snow Maiden” by A. Ostrovsky (author’s handwritten text dedicated to the pianist V. Timanova). Being a pianist was very important for R. Genika. Understanding pianism as a musical aesthetic phenomenon resulted in a multifaceted and deep understanding of the essence of musical art, which was characteristic of R. Genika as a music educator. The musician thought of himself precisely as a “generalist” who could handle any music profession – a performer’s, teacher’s, or researcher’s one. Hence, further study of the creative and critical heritage of R. Genika will invariably affect the spheres of other areas of musical art (opera, chamber, etc.). Such universal personalities as R. Genika have always been an engine for the musical-historical process, idea generator of the era. Nowadays such universal musicians, who would be a kind of "litmus test" of their time and faithfully served the art, are still in need. One of such outstanding figures in Ukraine, a universal personality was Valerii Oleksandrovych Bohdanov (07/13/1939 &#15801;– 10/10/2017) – performer, teacher, scientific researcher, composer. His multifaceted activities encompassed a wide range of musical art and were reflected in many years of pedagogical work, a large number of research works, transcriptions, and composer’s experiments. We would like to hope that this anniversary collection dedicated to V. Bogdanov will serve as a prelude to a deep and comprehensive study of the life and work of this bright and extraordinary musician.

25

Molokhina,LarisaA., and SergeyA.Filin. "АНАЛИЗ ВЛИЯНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ПАРАМЕТРОВ ДИФФУЗИИ НА ХАРАКТЕР РОСТА СЛОЕВ В ДВУХКОМПОНЕНТНОЙ МНОГОФАЗНОЙ СИСТЕМЕ." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.3 (September26, 2019): 419–31. http://dx.doi.org/10.17308/kcmf.2019.21/1159.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Целью статьи является разработка феноменологической математической модели формирования и роста фаз в части влияния температурной зависимости параметров диффузии на характер роста слоев в двухкомпонентной многофазной системе. Темой исследования является анализ влияния температурной зависимости параметров диффузии на изменение характера роста слоев в двухкомпонентных многофазных системах. Предложено решение задачи использования температурного режима процесса диффузии при разработке технологических процессов сварки, пайки, нанесении покрытий и других, при которых в диффузионной зоне образуются интерметаллические слои, карбиды, нитриды, субоксиды, фосфиды и т. п. с заданными и контролируемыми эксплуатационными характеристиками получаемых новых материалов, их соединений, покрытий и пр. Результаты решения задачи позволяют по известным параметрам температурного режима процесса диффузии, полученным при исследовании двухкомпонентной многофазной системы, целенаправленно контролировать динамику роста, состав образующихся в процессе диффузии слоев, и их выходные параметры в данной системе для получения новых материалов с заданными свойствами. REFERENCES Molokhina L. A., Rogalin V. E., Kaplunov I. A., Filin S. A. Mathematical model for the growth of phases in binary multiphase systems upon isothermic annealing. Russian Journal of Physical Chemistry A, 2017, v. 91(9), pp. 1635-1641. https://doi.org/10.7868/S0044453717090242 Molokhina L. A., Rogalin V. E., Kaplunov I. A., Filin S. A. Dependence of growth of the phases of multiphase binary systems on the diffusion parameters. Russian Journal of Physical Chemistry A, 2017, v. 91(12), pp. 2302–2309. https://doi.org/10.7868/S00444537171202143 Larikov L. N., Ryabov V. R., Fal’chenko V. M. Diffuzionnye processy v tverdoj faze pri svarke [Diffusive processes in a fi rm phase when welding]. Moscow, Mashinostroenie Publ., 1975, 192 p. (in Russ.) Roslyakova L. I., Roslyakov I. N. Diffuzionnye i kineticheskie protsessy na poverkhnosti stali pri tsem*ntatsii [Diffusion and kinetic processes on the surface of steel during carburizing]. Uprochnyayuschie tehnologii i pokrytiya, 2014(112), p. 32. (in Russ.) Robinson W. M., Bever M. B. Metallurgical Transactions, 1967, 239, p. 1015. Petrunin I. E., Markova I. Yu., Ekatova A. S. Metallovedenie pajki [Metallurgy Soldering]. Moscow, Metallurgiya Publ., 1976, 264 p. (in Russ.) Ivanov S. G., Gur’ev M. A., Gur’ev A. M. Calculation of diffusion coeffi cient of simultaneous complex steel borating process. Aktual’nye problemy v mashinostroenii, 2015(2), pp. 416-420. (in Russ.) Gurov K. P., Kartashkin B. A., Ugaste Yu. E. Vzaimnaya diffuziya v mnogofaznyh metallicheskih sistemah [Mutual diffusion in multiphase metal systems]. Moscow, Nauka Publ., 1981, 350 p. (in Russ.) van Loo F. J. J., Rieck G. Diffusion in the Ti–Al system. Interdiffusion between solid Al and Fe or Ti–Al alloys. Acta Metallyrg., 1973, v. 21, pp. 61–71. https://doi.org/10.1016/0001-6160(73)90220-4 Borisov V. I., Borisov T. V. Effect of interfacial reaction rate on diffusion layer growth kinetics. Fizika metallov i metallovedeniya, 1976, v. 42, p. 496. (in Russ.) Ganseen M., Rieck G. Effect of interfacial reaction rate on diffusion layer growth kinetics. Trans. Met. Soc. of AJME. 1967, v. 239, p. 1372. Bastin G.D., Rieck G. Diffusion in the Ti–Ni system. Occurrence and growth of the various intermetallic compounds. Met. Trans. Soc. 1974, v. 5, p. 1817. https://doi.org/10.1007/bf02644146 Clark E. J. Vacuum diffusion joining of titanium. Welding Journel., 1959, v. 38, p. 251. Lashko N. F., Lashko S. V. Pajka metallov [Soldering of metals]. Moscow, Mashinostroenie Publ., 1988, 376 p. (in Russ.) Neverov V. I. Issledovanie kinetiki diffuzionnogo rosta faz v binarnyh sistemah so slozhnoj diagrammoj sostoyaniya, primenyaemyh v novoj tehnike [The study of the kinetics of diffusion phase growth in binary systems with a complex state diagram used in the new technique]. Cand. phys. and math. sci. diss. Sverdlovsk, 1981, 192 p. (in Russ.) Bugakov V. Z. Diffuziya v metallah i splavah [Diffusion in metals and alloys]. Leningrad, Gostehizdat Publ., 1949, 206 p. (in Russ.) Gryzunov V. I., Sokolovskaya E. M., Ajtbaev B. K. O kontsentratsionnoy i temperaturnoy zavisimosti koeffi tsientov diffuzii [On the concentration and temperature dependence of diffusion coeffi cients]. Izv. AN KazSSR. Seriya himicheskaya, 1983(6), pp. 19–26. (in Russ.) Ajtbaev B. K., Gryzunov V. I., Sokolovskaya E. M. Issledovanie vzaimnoy diffuzii v sisteme titan – tsirkoniy [Study of mutual diffusion in titanium-zirconium system]. Vestnik Moskovskogo universiteta. Ser. 2, Himiya [Moscow University Chemistry Bulletin], 1993, v. 34(2), pp. 179–180. (in Russ.) Gurevich L. M., Trykov Yu. P., Arisova V. N., Kiselev O. S., Kondrat’ev A. Yu., Metelkin V. V. Struktura i svoystva sloistykh titano-alyuminievykh kompozitov, uprochnennykh chastit*ami intermetallidov [Structure and properties of layered titanium-aluminum composites reinforced with intermetallide particles]. Izvestiya VolGTU, Seriya «Problemy materialovedeniya svarki i prochnosti v mashinostroenii», 2009(59), pp. 5–10. (in Russ.) Shmorgun V. G., Trykov Yu. P., Slautin O. V., Bogdanov A. I, Bityuckih A. E. Struktura i svoystva sloistykh titano-alyuminievykh kompozitov, uprochnennykh chastit*ami intermetallidov {Effect of thermal and force effects on diffusion layer growth kinetics in nickel-aluminum composite]. Izvestiya VolGTU, Seriya «Problemy materialovedeniya svarki i prochnosti v mashinostroenii», 2009(59), pp. 35–39. (in Russ.) Chernyshev A. P., Ovchinnikov V. V. Opredelenie inkubatsionnogo perioda strukturnykh i fazovykh prevrashcheniy v stali [Determination of incubation period of structural and phase transformations in steel] Metallovedenie i termicheskaya obrabotka metallov. Izvestiya VUZov. Chernaya metallurgiya,1998(2), pp. 48–49. (in Russ.) Treheus G., Guiraldeng P. Infi uence des paliers de reaction isotherme sur la croissance par diffusione des composes d’un diagramme d’equilibre benaire. Compt. Rend. Acad. Sci. B, 1972, v. 275, p. 105. Shmogun V. G., Trykov Yu. P., Slautin O. V., Metelkin V. V., Bogdanov A. I. Kinetika diffuzionnykh protsessov v nikel’-alyuminievoy kompozitsii [Kinetics of diffusion processes in nickel-aluminum composi-tion]. Izvestiya vuzov. Poroshkovaya metallurgiya i funkcional’nye pokrytiya, 2008(4), pp. 24–28. (in Russ.) Mazanko V. F., Prokopenko G. I., Shterenberg A. M., Gercriken D. S., Mironova T. V. Osobennosti fazoobrazovaniya v zheleze i stali v usloviyakh ul’trazvukovoy udarnoy obrabotki [Features of phase formation in iron and steel under conditions of ultrasonic impact treatment]. Fizika i himiya obrabotki materialov, 2006(2), pp. 73–82. (in Russ.) Kulemin A. V., Mickevich A. M. Diffuziya v sisteme Cu–Zn pri deystvii znakoperemennykh napryazheniy [Diffusion in Cu - Zn system under alternating voltages]. Metallofi zika novejshie tehnologii, 2007(3), pp. 305–315. (in Russ.) Krutilin A. N., Kuharchuk M. N., Sycheva O. A. Review of the methods of intensifi cation of diffused processes of oxides deoxidation // Lit’e i metallurgiya, 2011(60), pp. 45–49. (in Russ.) Glensk A., Grabowski B., Hickel T., Neugebauer J. Breakdown of the arrhenius law in describing vacancy formation energies: the importance of local anharmonicity revealed by ab initio thermodynamics. Physical Review X, 2014, v. 4(1), p. 011018. https://doi.org/10.1103/physrevx.4.011018

26

Imamaliyeva, Samira Zakir. "New Thallium Tellurides with Rare Earth Elements." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no.4 (December15, 2020): 460–65. http://dx.doi.org/10.17308/kcmf.2020.22/3117.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Compounds of the Tl4LnTe3 (Ln-Nd, Sm, Tb, Er, Tm) composition were synthesized by the direct interaction of stoichiometric amounts of thallium telluride Tl2Te elementary rare earth elements (REE) and tellurium in evacuated (10-2 Pa) quartz ampoules. The samples obtained were identified by differential thermal and X-ray phase analyses. Based on the data from the heating thermograms, it was shown that these compounds melt with decomposition by peritectic reactions. Analysis of powder diffraction patterns showed that they were completely indexed in a tetragonal lattice of the Tl5Te3 type (space group I4/mcm). Using the Le Bail refinement, the crystal lattice parameters of the synthesized compounds were calculated.It was found that when the thallium atoms located in the centres of the octahedra were substituted by REE atoms, there occurred a sharp decrease in the а parameter and an increase in the с parameter. This was due to the fact that the substitution of thallium atoms with REE cations led to the strengthening of chemical bonds with tellurium atoms. This was accompanied by some distortion of octahedra and an increase in the с parameter. A correlation between the parameters of the crystal lattices and the atomic number of the lanthanide was revealed: during the transition from neodymium to thulium, therewas an almost linear decrease in both parameters of the crystal lattice, which was apparently associated with lanthanide contraction. The obtained new compounds complement the extensive class of ternary compounds - structural analogues of Tl5Te3 and are of interest as potential thermoelectric and magnetic materials. References1. Berger L. I., Prochukhan V. D. Troinye almazopodobnyepoluprovodniki [Ternary diamond-like semiconductors].Moscow: Metallurgiya; 1968. 151 p. (In Russ.)2. Villars P, Prince A. Okamoto H. Handbook ofternary alloy phase diagrams (10 volume set). MaterialsPark, OH: ASM International; 1995. 15000 p.3. Tomashyk V. N. Multinary Alloys Based on III-VSemiconductors. CRC Press; 2018. 262 p. DOI: https://doi.org/10.1201/97804290553484. Babanly M. B., Chulkov E. V., Aliev Z. S. et al. Phasediagrams in materials science of topological insulatorsbased on metal chalkogenides. Russian Journal ofInorganic Chemistry. 2017;62(13): 1703–1729. DOI:https://doi.org/10.1134/S00360236171300345. Imamaliyeva S. Z., Babanly D. M., Tagiev D. B.,Babanly M. B. Physicochemical aspects of developmentof multicomponent chalcogenide phases having theTl5Te3 structure. A Review. Russian Journal of InorganicChemistry. 2018;63(13): 1703–1724 DOI: https://doi.org/10.1134/s00360236181300416. Asadov M. M., Babanly M. B., Kuliev A. A. Phaseequilibria in the system Tl–Te. Izvestiya Akademii NaukSSSR, Neorganicheskie Materialy. 1977;13(8): 1407–1410.7. Okamoto H. Te-Tl (Tellurium-Thallium). Journalof Phase Equilibria. 2001;21(5): 501. DOI: https://doi.org/10.1361/1054971007703398338. Schewe I., Böttcher P., Schnering H. G. The crystalstructure of Tl5Te3 and its relationship to the Cr5B3.Zeitschrift für Kristallographie. 1989;188(3-4): 287–298.DOI: https://doi.org/10.1524/zkri.1989.188.3-4.2879. Böttcher P., Doert Th., Druska Ch., Brandmöller S.Investigation on compounds with Cr5B3 and In5Bi3structure types. Journal of Alloys and Compounds.1997;246(1-2): 209–215. DOI: https://doi.org/10.1016/S0925-8388(96)02455-310. Imamalieva S. Z., Sadygov F. M., Babanly M. B.New thallium neodymium tellurides. InorganicMaterials. 2008;44(9): 935–938. DOI: https://doi. org/10.1134/s002016850809007011. Babanly M. B., Imamalieva S. Z., Babanly D. М.,Sadygov F. M. Tl9LnTe6 (Ln-Ce, Sm, Gd) novel structuralTl5Te3 analogues. Azerbaijan Chemical Journal. 2009(1):122–125. (In Russ., abstract in Eng.)12. Imamaliyeva S. Z., Tl4GdTe3 and Tl4DyTe3 –novel structural Tl5Te3 analogues. Physics andChemistry of Solid State. 2020;21(3): 492–495. DOI:https://doi.org/10.15330/pcss.21.3.492-49513. Wacker K. Die kristalstrukturen von Tl9SbSe6und Tl9SbTe6. Z. Kristallogr. Supple. 1991;3: 281.14. Doert T., Böttcher P. Crystal structure ofbismuthnonathalliumhexatelluride BiTl9Te6. Zeitschrift für Kristallographie - Crystalline Materials. 1994;209(1):95. DOI: https://doi.org/10.1524/zkri.1994.209.1.9515. Bradtmöller S., Böttcher P. Darstellung undkristallostructur von SnTl4Te3 und PbTl4Te3. Zeitschriftfor anorganische und allgemeine Chemie. 1993;619(7):1155–1160. DOI: https://doi.org/10.1002/zaac.1993619070216. Voroshilov Yu. V., Gurzan M. I., Kish Z. Z.,Lada L. V. Fazovye ravnovesiya v sisteme Tl-Pb-Te ikristallicheskaya struktura soedinenii tipa Tl4BIVX3 iTl9BVX6 [Phase equilibria in the Tl-Pb-Te system andthe crystal structure of Tl4BIVX3 and Tl9BVX6 compounds].Izvestiya Akademii nauk SSSR. Neorganicheskiematerialy. 1988;24: 1479–1484. (In Russ.)17. Bradtmöller S., Böttcher P. Crystal structure ofcopper tetrathallium tritelluride, CuTl4Te3. CuTl4Te3.Zeitschrift für Kristallographie - Crystalline Materials.1994;209(1): 97. DOI: https://doi.org/10.1524/zkri.1994.209.1.9718. Bradtmöller S., Böttcher P. Crystal structure ofmolybdenum tetrathallium tritelluride, MoTl4Te3.Zeitschrift für Kristallographie – Crystalline Materials.1994;209(1): 75. DOI: https://doi.org/10.1524/zkri.1994.209.1.7519. Babanly M. B., Imamalieva S. Z., Sadygov F. M.New thallium tellurides with indium and aurum.Chemical Problems (Kimya Problemlәri). 2009; 171–174.(In Russ., abstract in Eng.)20. Guo Q., Chan M., Kuropatwa B. A., Kleinke H.Enhanced thermoelectric properties of variants ofTl9SbTe6 and Tl9BiTe6. Chemistry of Materials.2013;25(20): 4097–4104. DOI: https://doi.org/10.1021/cm402593f21. Guo Q., Assoud A., Kleinke H. Improved bulkmaterials with thermoelectric figure-of-merit greaterthan 1: Tl10–xSnxTe6 and Tl10–xPbxTe6. Advanced EnergyMaterials. 2014;4(14): 1400348-8. DOI: https://doi.org/10.1002/aenm.20140034822. Bangarigadu-Sanasy S., Sankar C. R., SchlenderP., Kleinke H. Thermoelectric properties of Tl10-xLnxTe6, with Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Hoand Er, and 0.25<x<1.32. Journal of Alloys andCompounds. 2013;549: 126–134. DOI: https://doi.org/10.1016/j.jallcom.2012.09.02323. Shi Y., Sturm C., Kleinke H. Chalcogenides asthermoelectric materials. Journal of Solid StateChemistry. 2019; 270: 273–279. DOI: https://doi.org/10.1016/j.jssc.2018.10.04924. Piasecki M., Brik M. G., Barchiy I. E., Ozga K.,Kityk I. V., El-Naggar A. M., Albassam A. A.,Malakhovskaya T. A., Lakshminarayana G. Bandstructure, electronic and optical features of Tl4SnX3(X= S, Te) ternary compounds for optoelectronicapplications. Journal of Alloys and Compounds.2017;710: 600–607. DOI: https://doi.org/10.1016/j.jallcom.2017.03.28025. Reshak A. H., Alahmed Z. A., Barchij I. E.,Sabov M. Yu., Plucinski K. J., Kityk I. V., Fedorchuk A. O.The influence of replacing Se by Te on electronicstructure and optical properties of Tl4PbX3 (X = Se orTe): experimental and theoretical investigations. RSCAdvances. 2015;5(124): 102173–102181. DOI: https://doi.org/10.1039/C5RA20956K26. Malakhovskay-Rosokha T. A., Filep M. J.,Sabov M. Y., Barchiy I. E., Fedorchuk A. O. Plucinski K. J.IR operation by third harmonic generation of Tl4PbTe3and Tl4SnS3 single crystals. Journal of Materials Science:Materials in Electronics. 2013;24(7): 2410–2413. DOI:https://doi.org/10.1007/s10854-013-1110-927. Isaeva A., Schoenemann R., Doert T. Syntheses,crystal structure and magnetic properties of Tl9RETe6(RE = Ce, Sm, Gd). Crystals. 2020;10(4): 277–11. DOI:https://doi.org/10.3390/cryst1004027728. Bangarigadu-Sanasy S., Sankar C. R., Dube P. A.,Greedan J. E., Kleinke H. Magnetic properties ofTl9LnTe6, Ln = Ce, Pr, Tb and Sm. Journal of Alloys andCompounds. 2014;589: 389–392. DOI: https://doi.org/10.1016/j.jallcom.2013.11.22929. Arpino K. E., Wasser B. D., and McQueen T. M.Superconducting dome and crossover to an insulatingstate in [Tl4]Tl1-xSnxTe3. APL Materials. 2015;3(4):041507. DOI: https://doi.org/10.1063/1.491339230. Arpino K. E., Wallace D. C., Nie Y. F., Birol T.,King P. D. C., Chatterjee S., Uchida M., Koohpayeh S.M., Wen J.-J., Page K., Fennie C. J., Shen K. M.,McQueen T. M. Evidence for topologically protectedsurface states and a superconducting phase in [Tl4](Tl1-xSnx)Te3 using photoemission, specific heat, andmagnetization measurements, and density functionaltheory. Physical Review Letters. 2014;112(1): 017002-5.DOI: https://doi.org/10.1103/physrevlett.112.01700231. Niu C., Dai Y., Huang B. et al. Natural threedimensionaltopological insulators in Tl4PbTe3 andTl4SnTe3. Frühjahrstagung der Deutschen PhysikalischenGesellschaft. Dresden, Germany, 30 Mar 2014 – 4 Apr2014.32. Imamalieva S. Z. Phase diagrams in thedevelopment of thallium-REE tellurides with Tl5Te3structure and multicomponent phases based on them.Overview. Kondensirovannye sredy i mezhfaznye granitsy =Condensed Matter and Interphases. 2018;20(3): 332–347.DOI: https://doi.org/10.17308/kcmf.2018.20/57033. Jia Y.Q. Crystal radii and effective ionic radii ofthe rare earth ions. Journal of Solid State Chemistry.1991; 95(1): 184-187. DOI: https://doi.org/10.1016/0022-4596(91)90388-X

27

Dolgih,IgorI., DmitryA.Zhukalin, and LarisaA.Bityutskaya. "КОЛЛЕКТИВНАЯ ДИНАМИКА И РАЗМЕРНЫЕ ЭФФЕКТЫ ФАЗООБРАЗОВАНИЯ В СИСТЕМЕ АЭРОСИЛ – ПОЛИСТИРОЛЬНЫЙ ЛАТЕКС." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.3 (September26, 2019): 366–73. http://dx.doi.org/10.17308/kcmf.2019.21/1150.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

В стандартных условиях проведен модельный эксперимент по влиянию сил обеднения на процесс высыхания капли взвесей невзаимодействующих частиц аэросил – полистирольный латекс. Впервые обнаружен быстропротекающий процесс фазового превращения аэросила в кристаллический SiO2 в течение десятков секунд, сопровождающийся резким изменением цвета раствора от светло-голубого до синего. Обнаружена дифракционная картина, свидетельствующая о нанокристаллической природе зародышеобразования новой фазы. Фазообразование интерпретировано как результат действия неравновесной силы обеднения в условиях гидродинамической неустойчивости высыхающей капли. REFERENCES Tret’yakov Yu. D. Self-organisation processes in the chemistry of materials. Uspekhi khimii [Russian Chemical Reviews], 2003, v. 72(8), pp. 651–679. https://doi.org/10.1070/RC2003v072n08ABEH000836 Kushnir S. E., Kazin P. E., Trusov L. A., Tret’yakov Yu. D. Self-organization of micro- and nanoparticles in ferrofl uids. Uspekhi khimii [Russian Chemical Reviews], 2012, v. 81(6), pр. 560–570. https://doi.org/10.1070/RC2012v081n06ABEH004250 Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfi mov M. V. Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2013, v. 8(3-4), pр. 137–162. https://doi.org/10.1134/S1995078013020110 Walker D. A., Kowalczyk B., Cruz M. O., Grzybowski B. A. Electrostatics at the nanoscale. Nanoscale, 2011, v. 3(4), pp. 1316–1344. https://doi.org/10.1039/C0NR00698J Ouyang Q., Castets V., Boissonade J., et al. Sustained patterns in chlorite–iodide reactions in a onedimensional reactor. J. Chem. Phys., 1991, v. 95(1), pp. 351–360. https://doi.org/10.1063/1.461490 Tarasevich Yu. Yu., Pravoslavnova D. M. Kachestvennyy analiz zakonomernostey vysykhaniya kapli mnogokomponentnogo rastvora na tverdoy podlozhke [Qualitative analysis of patterns of drying of a drop of a multicomponent solution on a solid substrate], Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, vol. 77, no. 2. pp. 17–21. URL: http://journals.ioffe. ru/articles/viewPDF/9047 (in Russ.) Faigl’ F., Anger V. Kapel’nyi analiz neorganicheskikh veshchestv [Drip Analysis of Inorganic Substances]. Moscow, Mir Publ., 1976, v. 1, 390 p., v. 2, 320 p. (in Russ.) Yakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. Kapli biologicheskikh zhidkostey, vysykhayushchie na tverdoy podlozhke: dinamika morfologii, massy, temperatury i mekhanicheskikh svoystv [Drops of biological fluids drying on a solid substrate: dynamics of morphology, mass, temperature, and mechanical properties]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2010, v. 80(7), pp. 17–23. URL: http://journals.ioffe.ru/articles/viewPDF/10043 (in Russ.) Alfi mov M. V., Kadushnikov R. M., Shturkin N. A., Alievskii V. M., Lebedev-Stepanov P. V. Immitatsionnoe modelirovanie protsessov samoorganizatsii nanochastit* [Simulation modeling of self-organization processes of nanoparticles], Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2006, v. 1(1–2), pp. 127–133. (in Russ.) Lebedev-Stepanov P. V., Gromov S. P., Molchanov S. P., Chernyshov N. A., Batalov I. S., Sazonov S. K., Lobova N. A., Shevchenko N. N., Men’shikova A. Yu., Alfimov M. V. Controlling the self-assemblage of modifi ed colloid particle ensembles in solution microdropletsRossiiskie nanotekhnologii [Nanotechnologies in Russia], 2011, v. 6(9–10), 569–578, pp. 72–78. https://doi.org/10.1134/S1995078011050119 Andreeva L. V., Novoselova A. S., Lebedev-Stepanov P. V., Ivanov D. A., Koshkin A. V., Petrov A. N., Alfi mov M. V. Zakonomernosti kristallizatsii rastvorennykh veshchestv iz mikrokapli [Patterns of crystallization of dissolved substances from microdrops]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, v. 77(2), pp. 22–30. URL: http://journals.ioffe.ru/articles/view-PDF/9048 (in Russ.) Barash L. Yu. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer, 2016, v. 102, pp. 445–454. https://doi.org/10.1016/j.ijh eatmasstransfer.2016.06.042 al Bityutskaya L. A., Zhukalin D. A., Tuchin A. V., Frolov A. A., Buslov V. A. Thermal dissipative structures in the case of carbon nanotubes aggregation in drying drops. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2014, v. 16(4), pp. 425–430. URL: https://journals.vsu.ru/kcmf/ article/view/856/937 (in Russ.) Asakura S., Oosawa F. Interaction between particles suspended in solutions of macromolecules. Polymer Science Part A: General Papers, 1958, v. 33(126), pp. 183–192. https://doi.org/10.1002/pol.1958.1203312618 Minton A. P. How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 2015, v. 119(14), pp. 2863–2869. https://doi.org/10.1242/jcs.03063 Chebotareva N. A., Kurganov B. I., Livanova N. B. Biochemical effects of molecular crowding. Biohimija [Biochemistry], 2004, v. 69(11), pp. 1239–1251. https://doi.org/10.1007/s10541-005-0070-y Bishop K. J., Wilmer C. E., Soh S., Grzybowski B. A. Nanoscale forces and their uses in self-assembly. Small, 2009, v. 5(14), p. 1600–1630. https://doi.org/10.1002/smll.200900358 Minton A. P. The infl uence of macromolecular crowding and macromolecular confi nement on biochemical reactions in physiological media. Journal of Biological Chemistry, v. 276(14), pp. 10577–10580. https://doi.org/10.1074/jbc.r100005200 Huber F., Strehle D., Schnauss J., Kas J. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces. New J. Physics, 2015, v. 17(4), p. 043029. https://doi.org/10.1088/1367-2630/17/4/043029 Jiang H., Wada H., Yoshinaga N., Sano M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Physical Review Letters, 2009, v. 102(20), p. 208301. https://doi.org/10.1103/physrevlett.102.208301 Deng H., Li G., Liu H. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Optics Express, 2012, v. 20(9), p. 9616. https://doi.org/10.1364/oe.20.009616 Wulfert R., Seiferta U., Speck T. Nonequilibrium depletion interactions in active microrheology. Soft Matter, 2017, v. 13(48), p. 9093–9102. https://doi.org/10.1039/c7sm01737e Dolgih I. I., Bitutskaya L. A. Entropy driven aggregation of CNT in a drying drop on hydrophilic and hydrophobic substrate. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2018, v. 20(4), p. 664–668. https://doi.org/10.17308/kcmf.2018.20/635

28

Korsakova,AlinaS., DzmitryA.Kotsikau, YulyanS.Haiduk, and VladimirV.Pankov. "Synthesis and Physicochemical Properties of MnxFe3–xO4 Solid Solutions." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no.4 (December1, 2020): 466–72. http://dx.doi.org/10.17308/kcmf.2020.22/3076.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Ferrimagnetic nanoparticles are used in biotechnology (as drug carriers, biosensors, elements of diagnostic sets, contrast agents for magnetic resonance imaging), catalysis, electronics, and for the production of magnetic fluids and magnetorheological suspensions, etc. The use of magnetic nanoparticles requires enhanced magnetic characteristics, in particular, high saturation magnetisation.The aim of our study was to obtain single-phased magnetic nanoparticles of MnxFe3–xO4 solid solutions at room temperature. We also studied the dependence of the changes in their structure, morphology, and magnetic properties on the degree of substitution in order to determine the range of the compounds with the highest magnetisation value.A number of powders of Mn-substituted magnetite MnxFe3–xO4 (x = 0 – 1.8) were synthesized by means of co-precipitation from aqueous solutions of salts. The structural and micro-structural features and magnetic properties of the powders were studied using magnetic analysis, X-ray diffraction, transmission electron microscopy, and IR spectroscopy.The X-ray phase analysis and IR spectroscopy confirm the formation of single-phase compounds with cubic spinel structures. The maximum increase in saturation magnetization as compared to non-substituted magnetite was observed for Mn0.3Fe2.7O4 (Ms = 68 A·m2·kg–1 at 300 K and Ms = 85 A·m2·kg–1 at 5 K). This is associated with the changes in the cation distribution between the tetrahedral and octahedral cites.A method to control the magnetic properties of magnetite by the partial replacement of iron ions in the magnetite structure with manganese has been proposed in the paper. The study demonstrated that it is possible to change the magnetisation and coercivity of powders by changing the degree of substitution. The maximum magnetisation corresponds to the powder Mn0.3Fe2.7O4. The nanoparticles obtained by the proposed method have a comparatively high specific magnetisation and a uniform size distribution. Therefore the developed materials can be used for the production of magnetorheological fluidsand creation of magnetically controlled capsules for targeted drug delivery and disease diagnostics in biology and medicine (magnetic resonance imaging). References1. Gubin C. G., Koksharov Yu. A., Khomutov G. B.,Yurkov G. Yu. Magnetic nanoparticles: preparation,structure and properties. Russian Chemical Reviews2005;74(6): 539–574. Available at: https://www.elibrary.ru/item.asp?id=90858192. Skumr yev V. , Stoyanov S. , Zhang Y. ,Hadjipanayis G., Givord D., Nogués J. Beating thesuperparamagnetic limit with exchange bias. Nature.2003;423(6943): 850–853. DOI: https://doi.org/10.1038/nature016873. Joseph A., Mathew S. Ferrofluids: syntheticstrategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem.2014;79(10): 1382–1420. DOI: https://doi.org/10.1002/cplu.2014022024. Mathew D. S., Juang R.-S. An overview of thestructure and magnetism of spinel ferrite nanoparticlesand their synthesis in microemulsions. ChemicalEngineering Journal. 2007:129(1–3): 51–65. DOI:https://doi.org/10.1016/j.cej.2006.11.0015. Rewatkar K. G. Magnetic nanoparticles:synthesis and properties. Solid State Phenomena.2016:241: 177–201. DOI: https://doi.org/10.4028/www.scientific.net/ssp.241.1776. Tartaj P., Morales M. P., Veintemillas-VerdaguerS., Gonzalez-Carre´no T., Serna C. J. Thepreparation of magnetic nanoparticles for applicationsin biomedicine. Journal of Physics D: Applied Physics.2003: 36 (13): 182–197. DOI: : https://doi.org/10.1088/0022-3727/36/13/2027. West A. Khimiya tverdogo tela. Teoriya iprilozheniya [Solid State Chemistry and Its Applications].In 2 parts Part 1. Transl. from English. Moscow, Mir,1988 558 p.8. Spravochnik khimika: V 6 t. 2-e izd. Obshchiyesvedeniya. Stroyeniye veshchestva. Svoystva vazhneyshikhveshchestv. Laboratornaya tekhnika [Chemist’sHandbook: In 6 volumes, 2nd ed. General information.The structure of matter. Properties of the mostimportant substances. Laboratory equipment]. B. P.Nikolskiy (ed.) Moscow – Leningrad: GoskhimizdatPubl.; 1963. V. 1. 1071 p. (In Russ.)9. Zhuravlev G. I. Khimiya i tekhnologiya ferritov[Ferrite chemistry and technology]. Leningrad:Khimiya Publ.; 1970. p. 192. (In Russ.)10. Mason B. Mineralogical aspects of the systemFeO-Fe2O3-MnO-Mn2O3. Geologiska Föreningen iStockholm Förhandlingar. 1943;65(2): 97–180. DOI:https://doi.org/10.1080/1103589430944714211. Guillemet-Fritsch S., Navrotsky A., TailhadesPh., Coradin H., Wang M. Thermochemistry of ironmanganese oxide spinels. Journal of Solid StateChemistry. 2005;178(1):106–113. DOI: https://doi.org/10.1016/j.jssc.2004.10.03112. Ortega D. Structure and magnetism in magneticnanoparticles. In: Magnetic Nanoparticles: FromFabrication to Clinical Applications. Boca Raton: CRCPress; 2012. p. 3–72. DOI:https://doi.org/10.1201/b11760-313. Kodama T., Ookubo M., Miura S., Kitayama Y.Synthesis and characterization of ultrafine Mn(II)-bearing ferrite of type MnxFe3-xO4 by coprecipitation.Materials Research Bulletin... 1996:31(12): 1501–1512.DOI: https://doi.org/10.1016/s0025-5408(96)00146-814. Al-Rashdi K. S., Widatallah H., Al Ma’Mari F.,Cespedes O., Elzain M., Al-Rawas A., Gismelseed A.,Yousif A. Structural and mossbauer studies ofnanocrystalline Mn2+ doped Fe3O4 particles. HyperfineInteract. 2018:239(1): 1–11. DOI: https://doi.org/10.1007/s10751-017-1476-915. Modaresi N., Afzalzadeh R., Aslibeiki B.,Kameli P. Competition between the Impact of cationdistribution and crystallite size on properties ofMnxFe3–xO4 nanoparticles synthesized at roomtemperature. Ceramics International. 2017:43(17):15381–15391. DOI: https://doi.org/10.1016/j.ceramint.2017.08.079

29

Mente,NolanR., AndrewJ.Wiemer, JeffreyD.Neighbors, JohnA.Beutler, RaymondJ.Hohl, and DavidF.Wiemer. "Total synthesis of (R,R,R)- and (S,S,S)-schweinfurthin F: Differences of bioactivity in the enantiomeric series." Bioorganic & Medicinal Chemistry Letters 17, no.4 (February 2007): 911–15. http://dx.doi.org/10.1016/j.bmcl.2006.11.096.

Full text

APA, Harvard, Vancouver, ISO, and other styles

30

Tietz, Hubert, and Rolf Trautner. "Tauber-S�tze f�r Potenzreihenverfahren." Archiv der Mathematik 50, no.2 (February 1988): 164–74. http://dx.doi.org/10.1007/bf01194575.

Full text

APA, Harvard, Vancouver, ISO, and other styles

31

Langmann, Klaus. "Endlichkeits- und Picard-S�tze f�r quasiprojektive R�ume." Mathematische Zeitschrift 197, no.4 (December 1988): 483–504. http://dx.doi.org/10.1007/bf01159808.

Full text

APA, Harvard, Vancouver, ISO, and other styles

32

Prischepa,SerghejL., Carla Cirillo, Carmine Attanasio, Antonio Vecchione, VasilijN.Kushnir, Chris Bell, Jan Aarts, and Mikhail Yu Kupriyanov. "Resistive Transitions in S/F/S Trilayers." Solid State Phenomena 152-153 (April 2009): 478–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.152-153.478.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The phase transition of Nb/Cu0.41Ni0.59/Nb triple layers from the normal to the superconducting state has been studied experimentally by measuring the temperature dependence of the electrical resistance, R(T). It is shown that the shape of the R(T) curves is different depending on the Cu0.41Ni0.59 thickness. To explain the experimental data we developed a qualitative model which makes more evident the interconnection between the superconducting phase transition and the 0 to  crossover in SFS structures.

33

Murchison, Duncan. "OBITUARY: THOMAS STANLEY WESTOLL, F. R. S." Proceedings of the Yorkshire Geological Society 51, no.1 (June 1996): 80–81. http://dx.doi.org/10.1144/pygs.51.1.80.

Full text

APA, Harvard, Vancouver, ISO, and other styles

34

Abarbanel, Joseph, and Shmuel Rosset. "The Schur multiplier of F/[R,S]." Journal of Pure and Applied Algebra 198, no.1-3 (June 2005): 1–8. http://dx.doi.org/10.1016/j.jpaa.2004.11.011.

Full text

APA, Harvard, Vancouver, ISO, and other styles

35

Yu, Yong, and Guizhen Liu. "[r, s, t; f]-COLORING OF GRAPHS." Journal of the Korean Mathematical Society 48, no.1 (January1, 2011): 105–15. http://dx.doi.org/10.4134/jkms.2011.48.1.105.

Full text

APA, Harvard, Vancouver, ISO, and other styles

36

Mukhtarova, Ziyafat. "Фазовые равновесия в системе Sm2Te3–GeTe." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.2 (June15, 2019): 328–33. http://dx.doi.org/10.17308/kcmf.2019.21/770.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Методами физико-химического анализа – дифференциально-термическим, высокотемпературным дифференциально-термическим, рентгенофазовым, микроструктурным, а также измерением микротвердости изучена система Sm2Te3–GeTe, которая является квазибинарным сечением тройной системы Ge–Sm–Te. При соотношении исходных теллуридов 1:1 (50 мол. %) и температуре 1100 К по перитектической реакции ж+Sm2Te3→ GeSm2Te4 образуется тройное соединение GeSm2Te4. Образцы системы, богатые GeTe, представляют собой компактные слитки блестяще-серого цвета, а сплавы, бо-гатые Sm2Te3 – спек черного цвета. Ликвидус системы Sm2Te3–GeTe состоит из трех ветвей: Sm2Te3, GeSm2Te4 и a-твердых растворов на основе GeTe. Рентгенофазовый анализ закристаллизованных образцов показал, что набор рентгеновских отражений соответствует фазам Sm2Te3, GeSm2Te4 и a-твердых растворов на основе GeTe. Установлено образование инконгруэнтно плавящегося соединения состава GeSm2Te4, которое может использоваться как термоэлектрический материал. На основе GeTe образуется узкая область твердого раствора REFERENCES Kohri H., Shiota , Kato M., Ohsugi J., Goto T. Synthesis and Thermolelectric Properties of Bi2Te3–GeTe Pseudo Binary System. Advances in Science and Technology, 2006, v. 46, pp. 168-173. https://doi.org/10.4028/www.scientifi c.net/ST.46.168 Gelbstein Y., Dado B., Ben-Yehuda O., Sadia Y., Dashevsky Z. and Dariel M. P. Highly effi cient Ge-Rich GexPb1-x Te thermoelectric alloys. Journal of Electronic Materials, 2010, v. 39(9), pp. 2049–2052. https://doi.org/10.1007/s11664-009-1012-z Gelbstein Y., Davidow J., Girard S.N., Chung D. Y. and Kanatzidis M. Controlling Metallurgical Phase Separation Reactions of the Ge0.87 Pb0.13Te Alloy for High Thermoelectric Performance. Advanced Energy Materials, 2013, v. 3, pp. 815–820. https://doi.org/10.1002/aenm.201200970 Gelbstein Y., Dashevsky Z. and Dariel M. P. Highly efficient bismuth telluride doped p-type Pb0.13Ge0.87Te for thermoelectric applications. Physical Status Solidi, 2007, v. 1(6), pp. 232–234. https://doi.org/10.1002/pssr.200701160 Gelbstein Y., Ben-Yehuda O., Dashevsky Z. and Dariel M. P. Phase transitions of p-type (Pb,Sn,Ge)Tebased alloys for thermoelectric applica tions. Journal of Crystal Growth, 2009, v. 311(18), pp. 4289–4292. https://doi.org/10.1007/s11664-008-0652-8 Gelbstein Y., Ben-Yehuda O., Pinhas E., et al. Thermoelectric properties of (Pb,Sn,Ge) Te-based alloys. Journal of Electronic Materials, 2009, v. 38(7), 1478–1482. https://doi.org/10.1007/s11664-008-0652-8 Li J., Chen Z., Zhang X., Sun Y., Yang J., Pei Y. Electronic origin of the high thermo- electric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 2017, v. 9, p. 353. https://doi.org/10.1038/am.2017.8 Sante D. Di., Barone P., Bertacco R., Picozzi S. Electric control of the giant rashba effect in bulk GeTe. Advanced materials, 2013, v. 25(27), pp. 3625–3626. https://doi.org/10.1002/adma.201203199 Li J., Zhang X., Lin S., Chen Z., Pei Y. Realizing the high thermoelectric performance of GeTe by Sbdoping and Se-alloying. Mater., 2017, v. 29(2), pp. 605–611. https://doi.org/10.1021/acs.chemmater.6b04066 Abrikosov N. Kh., Shelimova L. B. Poluprovodnikovye materialy na osnove soedineniy AIV BVI. [Semiconductor materials based on compounds АIV В]. Moscow, Nauka Publ., 1975, 195 p. (in Russ.) Korzhuev M. A. Vliyaniye legirovaniya na parametric of GeTe. Series 6. [Effect of doping on GeTe Series 6]. Moscow, 1983, no. 6 (179), pp. 33–36. (in Russ.) Okoye I. Electronic and optical properties of SnTe and GeTe. Journal of Physics: Condensed Matter, 2002, 14(36), pp. 8625–8637. https://doi.org/10.1088/0953-8984/14/36/318 Gelbstein Y., Rosenberg Y., Sadia Y. and Dariel M. P. Thermoelectric properties evolution of spark plasma sintered (Ge0.6Pb0.3Sn0.1)Te following a spinodal decomposition. Journal of Physical Chemistry, 2010, v. 114(30), pp. 13126–13131. https://doi.org/10.1021/jp103697s Rosenthal T., Schneider N., Stiewe C., Düblinger M., Oeckler O. Real Structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Mater., 2011, v. 23(19), pp. 4349–4356. https://doi.org/10.1021/cm201717z Li J., Chen Z., Zhang X., Yu H., Wu Z., Xie H., Chen Y., Pei Y. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh. Mater., 2017, v. 4(12), p. 341. https://doi.org/10.1002/advs.201700341 Bletskan D. I. Phase equilibrium in the system AIV-BVI-part II: systems germanium-chalcogen. Journal of Ovonic Research, 2005, v. 1(5), p. 53–60. Li S. P., Li J. Q., Wang Q. B., Wang L., Liu F. S., Ao W. Q. Synthesis and thermoelectric properties of the (GeTe)1-x(PbTe)x alloys. Solid State Sciences, 2011, v. 13(2), pp. 399–403. https://doi.org/10.1016/j.solidstatesciences. 2010.11.045 Gelbstein Y., Dado B., Ben-Yehuda O., Sadia Y., Dashevsky Z., Dariel M. P. High thermoelectric fi gure of merit and nanostructuring in bulk p-type Gex(SnyPb1–y)1–x Te alloys following a spinodal decomposition reaction. Chemistry of Materials, 2010, v. 22(3), pp. 1054–1058. https://doi.org/10.1021/cm902009t Yarembash E. I., Eliseev A. A. Khal’kogenidy redkozemel’nykh elementov: sintez i kristallokhimiya [Chalcogenides of rare-earth elements: synthesis and crystal chemistry]. Moscow, Nauka Publ., 1975, p. 258. (in Russ.) Mukhtarova Z. M., Bakhtiyarly I. B., Azhdarova D. S. Politermicheskoye secheniye Ge0.80 Te0.20–Sm0.80 Te0.20. khim. zhurn., 2010, no. 4, pp. 144–146. Mukhtarova Z. M., Bakhtiyarly I. B., Azhdarova D. S. Issledovaniye politermicheskogo secheniye Ge0.84Te0.16–Sm5Ge2Te7 v troynoy sisteme Ge–Te–Sm. Aze-rb. khim. zhurn., 2011, no. 4, pp. 57–59.

37

Magill,K.D. "The primes of S(R)." Bulletin of the Australian Mathematical Society 44, no.3 (December 1991): 417–27. http://dx.doi.org/10.1017/s0004972700029920.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

S(R) is the semigroup, under composition, of all continuous selfmaps of the space R of real numbers. We show that the primes of S(R) are precisely those continuous selfmaps which are surjective and have exactly two local extrema. Additional results are then derived from this. For example, if f is any surjective continuous selfmap of R with n ≥ 2 local extrema, then there exist homeomorphisms from R onto R such that m ≤ 1 + n/2 andwhere P is the polynomial defined by P(x) = x3 − x. It follows from this that the homeomorphisms together with the polynomial P generate a dense subsemigroup of S(R) where the topology on S(R) is the compact-open topology.

38

sem*nova,GalinaV., Tat’yanaA.Leont’eva, and Tat’yanaP.Sushkova. "Анализ фазовых равновесий в тройной системе Ge–P–Sn." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.2 (June14, 2019): 249–61. http://dx.doi.org/10.17308/kcmf.2019.21/763.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

На основании анализа характера фазовых равновесий в двойных системах, ограняющих диаграмму состояний тройной системы Ge – P – Sn, предложены теоретически возможные схемы ее фазового субсолидусного разграничения. Исследование методом рентгенофазового анализа образцов, принадлежащих политермическим сечениям Sn4P3-Ge, Sn4P3-GeP, показало, что разделение трехкомпонентной диаграммы состояния ниже солидуса осуществляется с помощью сечений Sn4P3-Ge, Sn4P3 -GeP и SnP3-GeP. Построенная по данным дифференциального термического анализа фазовая диаграмма сечения Sn4P3-Ge представляет диаграмму эвтектического типа с координатами эвтектической точки 800 К, 15 mol % Ge. REFERENCES Castellanos-Gomez A. Why all the fuss about 2D semiconductors? Nature Photonics, 2016, v. 10, pp. 202-204. https://doi.org/10.1038/nphoton.2016.53 Hasan M. Z., Kane C. L. Colloquium: Topological insulators. Mod. Phys., 2010, v. 82, pp. 3045–3067. https://doi.org/10.1103/revmodphys.82.3045 Piot P., Behrens C., Gerth C., Dohlus M., Lemery F., Mihalcea D., Stoltz P., Vogt M. Erratum: Generation and Characterization of Electron Bunches with Ramped Current Profi les in a Dual-Frequency Superconducting Linear Accelerator. Rev. Lett., 2012, v. 108, pp. 1–5. https://doi.org/10.1103/physrevlett.108.229902 Dávila M. E., Xian L, Cahangirov S., Rubio A., Le Lay G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene . New J. Phys., 2014, v. 16, pp. 095002. https://doi.org/10.1088/1367-2630/16/9/095002 Lalmi B., Oughaddou H., Enriquez H., Kara A., Vizzini S., Ealet B., Aufray B. Epitaxial growth of a silicene sheet. Phys. Lett., 2010, v. 97, pp. 223109. https://doi.org/10.1063/1.3524215 Kara H., Enriquez H., Seitsonen Ari P., Lew Yan Voon L.C., Vizzini S., Aufray B., Oughaddou H. Corrigendum to “A review on silicene – New candidate for electronics”. Sci. Rep., 2012, v. 67, pp. 1–18. https://doi.org/10.1016/j.surfrep.2012.01.001 Barreteau C, Michon B, Besnard C, Giannini E. High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. Cryst Growth., 2016, v. 443, pp. 75–80. https://doi.org/10.1016/j.jcrysgro.2016.03.019 Ugai Ya. A., Sokolov L.I., Goncharov E.G. P-T-X diagramma sostoyaniya sistemy GeP i termodinamika vzaimodeystviya komponentov [P-T-X GeP system state diagram and thermodynamics of componentinteraction] // Russian Journal of Inorganic Chemistry, 1978, v. 23(7), рр. 1907–1911. (in Russ.) Lee K., Synnestvedt S., Bellard M., Kovnir K. GeP and (Ge1−Sn )(P1−Ge ) (x≈0.12, y≈0.05): Synthesis, structure, and properties of two-dimensional layered tetrel phosphides. Solid State Chem., 2015, v. 224, pp. 62–70. https://doi.org/10.1016/j. jssc.2014.04.021 Vivian A. C. Inst. Met, 1920, v. 23, pp. 325-336. Zavrazhnov A. Yu., sem*nova G. V., Proskurina E. Yu., Sushkova T.P. Phase diagram of the Sn–P system. Thermal Analysis and Calorimetry, 2018, v. 134(1), pp. 475–481. https://doi.org/10.1007/s10973-018-7123-0 Olesinski R. W., Abbaschian G. J. The Ge−Sn (Germanium−Tin) system. Bulletin of Alloy Phase Diagrams, 1984, v. 5(3), pp. 265–271. https://doi.org/10.1007/bf02868550 Glazov V. M., Pavlova L. M. Khimicheskaya termodinamika i fazovyye ravnovesiya [Chemical thermodynamics and phase equilibria]. Moscow, Metallurgiya Publ, 1988, 560 p. (in Russ.) Emsley J. The elements: Second Edition. Oxford University Press, Oxford, 1991. Arita M. Kamo K. Measurement of Vapor Pressure of Phosphorus over Sn–P Alloys by Dew Point Method. Jpn. Inst. Met, 1985, v. 26(4), pp. 242–250. https://doi.org/10.2320/matertrans1960.26.242

39

Огнєва, Анастасія. "Revisiting Research on Grammatical Gender Acquisition by Russian-Speaking Children with Developmental Language Disorder." East European Journal of Psycholinguistics 6, no.1 (June30, 2019): 58–64. http://dx.doi.org/10.29038/eejpl.2019.6.1.ogn.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Although both Developmental Language Disorder (DLD) and grammatical gender acquisition have been the focus of scientific interest for decades, a few research has been conducted in order to explore how DLD Russian-speaking children acquire this linguistic category. One of the main reasons for this is the difficulty of recruiting DLD children as we still cannot reliably identify these children. Previous studies claim that typically developing children acquire grammatical gender at about 3-4 years of age, but have difficulties with neuter gender up to 6 years of age. This brief report aims at providing the theoretical background of a research in process. The review deals with the issue of grammatical gender acquisition by Russian-speaking children diagnosed with DLD. Specifically, this paper reviews i) the main findings of studies on gender acquisition in typically developing Russian-speaking children, ii) the outcomes of research on how Russian-speaking DLD children make use of grammatical gender. References Anderson, R.T. & Souto, S.M. (2005). The use of articles by monolingual Puerto Rican Spanish-speaking children with specific language impairment. Applied Psycholinguistics, 26(4), 621-647. Bedore, L. M., & Leonard, L. B. (2001). Grammatical morphology deficits in Spanish-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 44(4), 905–924 Bishop, D.V.M., Snowling M.J., Thompson, P. A., Greenhalgh Y., & The CATALISE Consortium. (2017): Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. PLoS ONE, 11(7), 1-26. Clahsen, H., Bartke, S. & Göllner S. (1997). Formal features in impaired grammars: A Com­parison of English and German SLI children. Journal of Neurolinguistics, 10(2/3), 151-171. Corbett, G. G. (1991). Gender. Cambridge: Cambridge University Press. Гвоздев, А.Н. (1961). Формирование у ребенка грамматического строя русского языка. Москва: АПН РСФСР. Jackson-Maldonado, D. & Maldonado, R. (2017). Grammaticality differences between Spanish-speaking children with specific language impairment and their typically developing peers. International Journal of Language and Communication Disorders, 52(6), 750-765. Leonard, Laurence B. (2014). Children with Specific Language Impairment. Cambridge: The MIT Press. Mitrofanova, N., Rodina, Y., Urek, O. & Westergaard, M. (2018). Bilinguals’ Sensitivity to Grammatical Gender Cues in Russian: The Role of Cumulative Input, Proficiency, and Dominance. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2018.01894 Orgassa, A., & Weerman, F. (2008). Dutch gender in specific language impairment and second language acquisition. Second Language Research, 24(3), 333–364. Popova, M. I. (1973). Grammatical elements of language in the speech of pre-preschool children. In Studies of child language development, (pp. 269–80). C. A. Ferguson & D. I. Slobin (eds). New York: Holt, Rinehart and Winston. Rakhlin, N., Kornilov, S., & Grigorenko, E. (2014). Gender and agreement processing in children with Developmental Language Disorder. Journal of Child Language, 41(2), 241–274. Rodina, Y. (2008). Semantics and morphology: The acquisition of grammatical gender in Russian. Doctoral thesis. Tromso: University of Tromso. Retrieved from: https://munin.uit.no/handle/ 10037/2247. Rodina, Y. & Westeergard M. (2012). A cue-based approach to the acquisition of grammatical gender in Russian. Journal of Child Language, 39(5), 1077-1106. Roulet-Amiot, L., & Jacubowicz, C. (2006). Production and perception of gender agreement in French SLI. Advances in Speech Language Pathology, 8(4), 335–346. Silveira, M. (2006). A preliminary investigation of grammatical gender abilities in Portuguese speaking children with Specific Language Impairment. Unpublished working paper, University College London, Department of Phonetics and Linguistics. Retrieved from: http://www.ucl.ac.uk/ psychlangsci/research/linguistics/publications/wpl/06papers/silveira Tribushinina, E., & Dubinkina, E. (2012). Adjective production by Russian-speaking children with specific language impairment. Clinical Linguistics and Phonetics, 26(6), 554–571. Tribushinina, E., Mak, M., Dubinkina, E. & Mak, W.M. (2018). Adjective production by Russian-speaking children with developmental language disorder and Dutch-Russian simultaneous bilinguals. Applied Psycholinguistics, 39(5), 1033-1064. Цейтлин, С. Н. (2005). Категория рода в детской речи. Проблемы функциональной грамматики: полевые структуры. А.В. Бондаренко (ред.). Санкт-Петербург: Наука, 346-375. Цейтлин, С.Н. (2009). Очерки по словообразованию и формообразованию в детской речи. Москва: Знак. Varlokosta, S. & Nerantzini, M. (2013). Grammatical gender in Specific Language Impairment: Evidence from Determiner-Noun Contexts in Greek. Psychology, 20(3), 338-357. References (translated and transliterated) Anderson, R.T. & Souto, S.M. (2005). The use of articles by monolingual Puerto Rican Spanish-speaking children with specific language impairment. Applied Psycholinguistics, 26(4), 621-647. Bedore, L. M., & Leonard, L. B. (2001). Grammatical morphology deficits in Spanish-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 44(4), 905–924 Bishop, D.V.M., Snowling M.J., Thompson, P. A., Greenhalgh Y., & The CATALISE Consortium. (2017): Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. PLoS ONE, 11(7), 1-26. Clahsen, H., Bartke, S. & Göllner S. (1997). Formal features in impaired grammars: A Com­parison of English and German SLI children. Journal of Neurolinguistics, 10(2/3), 151-171. Corbett, G. G. (1991). Gender. Cambridge: Cambridge University Press. Гвоздев, А.Н. (1961). Формирование у ребенка грамматического строя русского языка. Москва: АПН РСФСР. Gvozdev, A. N. (1961). Formirovanie u Rebenka Grammatičeskogo Stroja Russkogo Jazyka [The Construction of the Grammatical Basis of the Russian Language in a Child]. Moscow: The Russian Academy of Pedagogical Sciences. Jackson-Maldonado, D. & Maldonado, R. (2017). Grammaticality differences between Spanish-speaking children with specific language impairment and their typically developing peers. International Journal of Language and Communication Disorders, 52(6), 750-765. Leonard, Laurence B. (2014). Children with Specific Language Impairment. Cambridge: The MIT Press. Mitrofanova, N., Rodina, Y., Urek, O. & Westergaard, M. (2018). Bilinguals’ Sensitivity to Grammatical Gender Cues in Russian: The Role of Cumulative Input, Proficiency, and Dominance. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2018.01894 Orgassa, A., & Weerman, F. (2008). Dutch gender in specific language impairment and second language acquisition. Second Language Research, 24(3), 333–364. Popova, M. I. (1973). Grammatical elements of language in the speech of pre-preschool children. In Studies of child language development, (pp. 269–80). C. A. Ferguson & D. I. Slobin (eds). New York: Holt, Rinehart and Winston. Rakhlin, N., Kornilov, S., & Grigorenko, E. (2014). Gender and agreement processing in children with Developmental Language Disorder. Journal of Child Language, 41(2), 241–274. Rodina, Y. (2008). Semantics and morphology: The acquisition of grammatical gender in Russian. Doctoral thesis. Tromso: University of Tromso. Retrieved from: https://munin.uit.no/handle/ 10037/2247. Rodina, Y. & Westeergard M. (2012). A cue-based approach to the acquisition of grammatical gender in Russian. Journal of Child Language, 39(5), 1077-1106. Roulet-Amiot, L., & Jacubowicz, C. (2006). Production and perception of gender agreement in French SLI. Advances in Speech Language Pathology, 8(4), 335–346. Silveira, M. (2006). A preliminary investigation of grammatical gender abilities in Portuguese speaking children with Specific Language Impairment. Unpublished working paper, University College London, Department of Phonetics and Linguistics. Retrieved from: http://www.ucl.ac.uk/ psychlangsci/research/linguistics/publications/wpl/06papers/silveira Tribushinina, E., & Dubinkina, E. (2012). Adjective production by Russian-speaking children with specific language impairment. Clinical Linguistics and Phonetics, 26(6), 554–571. Tribushinina, E., Mak, M., Dubinkina, E. & Mak, W.M. (2018). Adjective production by Russian-speaking children with developmental language disorder and Dutch-Russian simultaneous bilinguals. Applied Psycholinguistics, 39(5), 1033-1064. Цейтлин, С. Н. (2005). Категория рода в детской речи. Проблемы функциональной грамматики: полевые структуры. А.В. Бондаренко (ред.). Санкт-Петербург: Наука, 346-375. Ceitlin, S. N. (2005). Kategorija roda v detskoj reči [The category of gender in child speech]. In Problemy funkcional'noj grammatiki: Polevye struktury [Issues in functional grammar: Field structures], (pp. 346–375). A. V. Bondarko (ed.). S.-Petersburg: Nauka. Цейтлин, С.Н. (2009). Очерки по словообразованию и формообразованию в детской речи. Москва: Знак. Ceitlin, S. N. (2009). Ocherki po slovoobrazovaniju i formoobrazovaniju v detskoj rechi [On Inflection and Derivation in Child Language]. Moscow: Znak. Varlokosta, S. & Nerantzini, M. (2013). Grammatical gender in Specific Language Impairment: Evidence from Determiner-Noun Contexts in Greek. Psychology, 20(3), 338-357.

40

Panteleeva,ViktoriaV., IlyaS.Votinov, IgorS.Polkovnikov, and AnatoliyВ.Shein. "КИНЕТИКА КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА НА МОНОСИЛИЦИДЕ МАРГАНЦА В СЕРНОКИСЛОМ ЭЛЕКТРОЛИТЕ." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no.3 (September26, 2019): 432–40. http://dx.doi.org/10.17308/kcmf.2019.21/1153.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Методами поляризационных и импедансных измерений изучена кинетика реакции выделения водорода на MnSi-электроде в сернокислых растворах с различной концентрацией ионов водорода. Сделано предположение о механизме выделения водорода на силициде. Отмечено влияние тонкой оксидной пленки на кинетику выделения водорода на MnSi при невысоких катодных поляризациях. REFERENCES Rotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.) Antropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.) Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107 Vijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7 Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P Shein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.) Vigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181 Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076 Kichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.) Eftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125 Schalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. https://doi.org/10.1016/j.electacta.2017.11.069 Kuz’minykh M. M., Panteleeva V. V., Shein A. B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. Izvestiya vuzov. Khimiya i khim. tekhnologiya, 2019, v. 62(2), pp. 59–64. https://doi.org/10.6060/ivkkt. 20196202.5750 (in Russ.) Samsonov G. V., Dvorina L. A., Rud’ B.M. Silitsidy [Silicides]. Moscow, Metallurgiya Publ., 1979, 272 p. (in Russ.) Samsonov G. V., Vinitskii I. M. Tugoplavkie soedineniya [Refractory compounds]. Moscow, Metallurgiya Publ., 1976, 560 p. (in Russ.) Yamasaki T., Okada S., Kamamoto K., Kudou K. Crystal Growth and properties of manganese-silicon system compounds by high-temperature tin solution method. Pacific Science Review, 2012, v. 14(3), pp. 275. Lee M., Onose Y., Tokura Y., Ong N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B., 2007, v. 75(17), p. 172403. https://doi.org/10.1103/PhysRevB.75.172403 Neubauer A., Pfl eiderer C., Binz B., Rosch A., Ritz R., Niklowitz P. G., Boni P. Topological Hall effect in the a phase of MnSi. Phys. Rev. Lett., 2009, v. 102(18), pp. 186602. https://doi.org/10.1103/PhysRevLett.102.186602 Sukhotin A. M. Spravochnik po elektrokhimii [Handbook of electrochemistry]. Leningrad, Khimiya Publ., 1981, 488 p. (in Russ.) Zhang X. G. Electrochemistry of silicon and its oxide. Kluwer Academic/Plenum Publishers, New York, 2001. 510 p. Xu X., Bojkov H., Goodman D. W. Electrochemical study of ultrathin silica fi lms supported on a platinum substrate. J. Vac. Sci. Technol., 1994, v. A12(4), pp. 1882–1885. https://doi.org/10.1116/1.579022 Harrington D. A., Conway B. E. ac Impedance of Faradaic reactions involving electrosorbed intermediates — I. Kinetic theory. Electrochim. Acta, v. 32(12), pp. 1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1 Orazem M. E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons, Hoboken, New York, 2008, 533 p. Kichigin V. I., Sherstobitova I. N., Shein A. B. Impedans elektrokhimicheskikh i korrozionnykh sistem: ucheb. posobie po spetskursu [The impedance of electrochemical and corrosion systems: textbook. special course allowance]. Perm’, Perm. gos. un-t Publ., 2009, 239 p. (in Russ.) Kichigin V. I., Shein A. B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. Electrochemica Acta, 2014, v. 138, pp. 325–333. https://doi.org/10.1016/j.electacta.2014.06.114 Kichigin V. I., Shein A. B. Additional criteria for the mechanism of hydrogen evolution reaction in the impedance spectroscopy method. Vestnik Permskogo Universiteta. Ser. Khimiya, 2018, v. 8, iss. 3, pp. 316–324. https://doi.org/10.17072/2223-1838-2018-3-316-324 (in Russ.) Kichigin V. I., Shein A. B. Infl uence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. Electrochemica Acta, 2016, v. 201, pp. 233–239. https://doi.org/10.1016/j.electacta.2016.03.194

41

Johnson,W. "Early bridge consultants, Benjamin Robins, F. R. S. and Charles Hutton, F. R. S. and mis-judged bridge designer, Thomas Paine." International Journal of Mechanical Sciences 41, no.6 (June 1999): 741–48. http://dx.doi.org/10.1016/s0020-7403(98)00026-5.

Full text

APA, Harvard, Vancouver, ISO, and other styles

42

Galíndez-Jorge, Verónica, Bruna De Carvalho, and Eduardo Akio Shoji. "fronteirasdaescrita/fronteirasdoliterário/fronteirasdaliteratura f r o n t e i r a s." Revista Criação & Crítica 2, no.11 (November25, 2013): i. http://dx.doi.org/10.11606/issn.1984-1124.v2i11pi.

Full text

APA, Harvard, Vancouver, ISO, and other styles

43

Djibril Diallo, Abdoul, Papa Cheikhou Diop, and Mamadou Barry. "On S-quasi-Dedekind Modules." Journal of Mathematics Research 9, no.5 (September20, 2017): 97. http://dx.doi.org/10.5539/jmr.v9n5p97.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

Let $R$ be a commutative ring and $M$ an unital $R$-module. A proper submodule $L$ of $M$ is called primary submodule of $M$, if $rm\in L$, where $r\in R$, $m\in M$, then $m\in L$ or $r^{n}M\subseteq L$ for some positive integer $n$. A submodule $K$ of $M$ is called semi-small submodule of $M$ if, $K+L\neq M$ for each primary submodule $L$ of $M$. An $R$-module $M$ is called S-quasi-Dedekind module if, for each $f\in End_{R}(M),$ $ f\neq 0$ implies $Kerf$ semi-small in $M$. In this paper we introduce the concept of S-quasi-Dedekind modules as a generalisation of small quasi-Dedekind modules, and gives some of their properties, characterizations and exemples. Another hand we study the relationships of S-quasi-Dedekind modules with some classes of modules and their endomorphism rings.

44

deSá-Martins,R., A.Cleiton-José, JM Rocha-Faria, and LA de Melo. "E F F E C T O F WAT E R A N D S A LT S T R E S S O N S E E D S GERMINATION AND VIGOR OF DIFFERENT EUCALYPTUS SPECIES." JOURNAL OF TROPICAL FOREST SCIENCE 31, no.1 (February1, 2019): 12–18. http://dx.doi.org/10.26525/jtfs2019.31.1.012018.

Full text

APA, Harvard, Vancouver, ISO, and other styles

45

Baumgartner, Manuela. "Prof. Heinz F. R. Prechtl (1927–2014)." Neuropediatrics 46, no.02 (March22, 2015): 151–52. http://dx.doi.org/10.1055/s-0035-1549228.

Full text

APA, Harvard, Vancouver, ISO, and other styles

46

Yaraman, Aybeg�l. "Turquie�: r�alit�s du f�minisme, ambigu�t�s du k�malisme." Apr�s-demain N�1,NF, no.1 (2007): 16. http://dx.doi.org/10.3917/apdem.001.0016.

Full text

APA, Harvard, Vancouver, ISO, and other styles

47

Smith, Cory, Terry Housh, Ethan Hill, Joshua Keller, Glen Johnson, and Richard Schmidt. "Effects of Fatigue on Voluntary Electromechanical and Relaxation Electromechanical Delay." International Journal of Sports Medicine 38, no.10 (August7, 2017): 763–69. http://dx.doi.org/10.1055/s-0043-115734.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

AbstractThe purposes of the present study were to examine: 1) the effects of fatigue on electromechanical delay from the onsets of the electromyographic signal to force production (EMDE-F), the onsets of the electromyographic to mechanomyographic signals (EMDE-M), the onsets of the mechanomyographic signal to force production (EMDM-F), as well as the cessations of the electromyographic to force production (R-EMDE-F), cessation of the electromyographic to mechanomyographic signals (R-EMDE-M), and cessations of the mechanomyographic signal to force production (R-EMDM-F); and 2) the relative contributions from EMDE-M and EMDM-F to EMDE-F as well as R-EMDE-M and R-EMDM-F to R-EMDE-F from the vastus lateralis in non-fatigued and fatigued states. The values EMDE-F, EMDE-M, EMDM-F, R-EMDE-F, R-EMDE-M and R-EMDM-F were calculated during maximal voluntary isometric contractions, before and after 70% 1-repetition maximum leg extensions to failure. There were significant pretest to posttest increases in EMDE-F (73%;p<0.01), EMDE-M (99%;p<0.01), EMDM-F (60%;p<0.01), R-EMDE-F (101%;p<0.01) and R-EMDM-F (368%;p<0.01), but no significant change in R-EMDE-M (25%;p=0.46). Fatigue-induced increase in EMDE-F indicated excitation-contraction coupling failure (EMDE-M) and increases in the compliance of the series elastic component (EMDM-F). Increases in R-EMDE-F were due to increases in relaxation time for the series elastic component (R-EMDM-F), but not changes in the reversal of excitation-contraction coupling (R-EMDE-M).

48

Стоюхина,Н.Ю. "GEORGY IVANOVICH CHELPANOV AND LABOR PSYCHOLOGY." Институт психологии Российской Академии Наук. Организационная психология и психология труда, no.1(18) (April12, 2021): 162–83. http://dx.doi.org/10.38098/ipran.opwp.2021.18.1.008.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

В статье анализируются результаты поездки Г.И. Челпанова в Америку в 1911 г., куда он направился во время строительства Психологического института при Московском университете для ознакомления с организацией психологических институтов и лабораторий, в которых работали виднейшие ученые Дж.М. Кеттелл, Р. Вудвортс, Э.Б. Титченер, Д.Р. Энджелл, Х.А. Карр, Ч.Х. Джадд, Д.Ф. Шепард, У.Б. Пиллсбери, С. Холл, Г. Мюнстерберг и др. Устройство и принципы работы руководимых ими научно-исследовательских подразделений оставили большое впечатление. По приезде в Москву в своих выступлениях он неоднократно возвращался к своим американским воспоминаниям. Начало ХХ в. характеризовалось зарождением прикладной психологии, а одним из ее направлений была психология труда. Американский ученый немецкого происхождения Г. Мюнстерберг - признанный в мире основатель прикладной психологии, за трудами которого внимательно следил Г.И. Челпанов. Именно ее развитие стала предметом обсуждения в его выступлениях в 1911 - 1912 гг. Главные вопросы, требовавшие незамедлительного ответа - области приложения прикладной психологии и кто будет этим заниматься в России. Именно Психологический институт, оснащенный самыми современными приборами, должен был готовить к будущим научным исследованиям тех молодых людей, которые в скором времени займутся прикладной психологией. Так и произошло - с 1912 г. заработал Психологический институт, где воплощались замыслы Г.И. Челпанова. В 1921 г., т.е. ровно 100 лет назад, уже в Советской России, он возвращается к теме прикладной психологии, имевшей конкретное имя - психология труда. Он наметил задачи, требовавшие незамедлительного решения, которые, как показала практика 1920-30-х гг., решались советскими учеными. The article addresses G. I. Chelpanov’s trip to the USA in 1911, where he went during the construction of the Psychological Institute at Moscow University to get acquainted with the organization of psychological institutes and laboratories, where the most prominent scientists J. M. Cattell, R. Woodworth, E. B. Titchener, J.R. Angell, H. A. Carr, C. H. Judd, J. F. Shepard, W. B. Pillsbury, S. Hall, G. Münsterberg and many others worked, the structure and principles of the research led by them left a great impression. Speaking upon his arrival in Moscow, he repeatedly returns to his American memories. The beginning of the twentieth century was marked by the emergence of applied psychology, and one of the areas was labor psychology. The American scientist of German origin G. Münsterberg is the internationally recognized founder of applied psychology, whose works G. I. Chelpanov knew and followed. It was its development that became the subject of discussion in his speeches in 1911 and 1912. The main questions that demanded an immediate answer were the areas of application of applied psychology and personalities who would implement this in Russia. It was the modern and equipped with the most modern devices Psychological Institute that was supposed to prepare for future scientific research those young people who would soon be engaged in applied psychology. And so, it happened - since 1912 the Psychological Institute was opened, where G. I. Chelpanov’s ideas were manifested. In 1921, already in Soviet Russia, he returned to the topic of applied psychology, which already had a specific name - labor psychology. He outlined the tasks that needed to be addressed in the near future, which, as the practice of the 1920s and 1930s showed, were solved by Soviet scientists.

49

KARACA, NAZLI, MUJAHID ABBAS, and ISA YILDIRIM. "Convergence of a Newton-like S-iteration process in R." Creative Mathematics and Informatics 26, no.3 (2017): 289–96. http://dx.doi.org/10.37193/cmi.2017.03.06.

Full text

APA, Harvard, Vancouver, ISO, and other styles

Abstract:

The aim of this paper is to show that Newton-like S-iteration method converges to the unique solution of the scalar nonlinear equation f(x) = 0 under weaker conditions involving only f and f 0. We also present numerical examples to support our analytical results.

50

BARTOLINI,A. "Pharmacological differences between R(-) and S(+) tocainide*1." Pharmacological Research 26 (September 1992): 91. http://dx.doi.org/10.1016/1043-6618(92)90892-f.

Full text

APA, Harvard, Vancouver, ISO, and other styles

You might also be interested in the bibliographies on the topic 'Moscow (R.S.F.S.R.)' for other source types:

Dissertations / Theses Books

To the bibliography
Journal articles: 'Moscow (R.S.F.S.R.)' – Grafiati (2024)
Top Articles
Latest Posts
Article information

Author: Patricia Veum II

Last Updated:

Views: 5233

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Patricia Veum II

Birthday: 1994-12-16

Address: 2064 Little Summit, Goldieton, MS 97651-0862

Phone: +6873952696715

Job: Principal Officer

Hobby: Rafting, Cabaret, Candle making, Jigsaw puzzles, Inline skating, Magic, Graffiti

Introduction: My name is Patricia Veum II, I am a vast, combative, smiling, famous, inexpensive, zealous, sparkling person who loves writing and wants to share my knowledge and understanding with you.